skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 27, 2026

Title: Aggressively Dissipative Dark Dwarfs: The Effects of Atomic Dark Matter on the Inner Densities of Isolated Dwarf Galaxies
Abstract We present the first suite of cosmological hydrodynamical zoom-in simulations of isolated dwarf galaxies for a dark sector that consists of cold dark matter and a strongly dissipative subcomponent. The simulations are implemented in GIZMO and include standard baryons following the FIRE-2 galaxy formation physics model. The dissipative dark matter is modeled as atomic dark matter (aDM), which forms a dark hydrogen gas that cools in direct analogy to the Standard Model. Our suite includes seven different simulations of ∼1010Msystems that vary over the aDM microphysics and the dwarf’s evolutionary history. We identify a region of aDM parameter space where the cooling rate is aggressive and the resulting halo density profile is universal. In this regime, the aDM gas cools rapidly at high redshifts, and only a small fraction survives in the form of a central dark gas disk; the majority collapses centrally into collisionless dark “clumps,” which are clusters of subresolution dark compact objects. These dark clumps rapidly equilibrate in the inner galaxy, resulting in an approximately isothermal distribution that can be modeled with a simple fitting function. Even when only a small fraction (∼5%) of the total dark matter is strongly dissipative, the central densities of classical dwarf galaxies can be enhanced by over an order of magnitude, providing a sharp prediction for observations.  more » « less
Award ID(s):
2210533
PAR ID:
10646411
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
American Astronomical Society
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
982
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
175
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Using cosmological hydrodynamical zoom-in simulations, we explore the properties of subhalos in Milky Way analogs that contain a subcomponent of atomic dark matter (ADM). ADM differs from cold dark matter (CDM) due to the presence of self-interactions that lead to energy dissipation, analogous to standard model baryons. This model can arise in dark sectors that are natural and theoretically motivated extensions to the standard model. The simulations used in this work were carried out usingGIZMOand utilize the FIRE-2 galaxy formation physics in the standard model baryonic sector. For the parameter points we consider, the ADM gas cools efficiently, allowing it to collapse to the center of subhalos. This increases a subhalo’s central density and affects its orbit, with more subhalos surviving small pericentric passages. The subset of subhalos that host satellite galaxies have cuspier density profiles and smaller stellar half-mass radii relative to CDM. The entire population of dwarf galaxies produced in the ADM simulations is more compact than those seen in CDM simulations, unable to reproduce the entire diversity of observed dwarf galaxy structures. Additionally, we also identify a population of highly compact subhalos that consist nearly entirely of ADM and form in the central region of the host, where they can leave distinctive imprints in the baryonic disk. This work presents the first detailed exploration of subhalo properties in a strongly dissipative dark matter scenario, providing intuition for how other regions of ADM parameter space, as well as other dark sector models, would impact galactic-scale observables. 
    more » « less
  2. null (Ed.)
    ABSTRACT We present the first set of cosmological baryonic zoom-in simulations of galaxies including dissipative self-interacting dark matter (dSIDM). These simulations utilize the Feedback In Realistic Environments galaxy formation physics, but allow the dark matter to have dissipative self-interactions analogous to standard model forces, parametrized by the self-interaction cross-section per unit mass, (σ/m), and the dimensionless degree of dissipation, 0 < fdiss < 1. We survey this parameter space, including constant and velocity-dependent cross-sections, and focus on structural and kinematic properties of dwarf galaxies with $$M_{\rm halo} \sim 10^{10-11}{\, \rm M_\odot }$$ and $$M_{\ast } \sim 10^{5-8}{\, \rm M_\odot }$$. Central density profiles (parametrized as ρ ∝ rα) of simulated dwarfs become cuspy when $$(\sigma /m)_{\rm eff} \gtrsim 0.1\, {\rm cm^{2}\, g^{-1}}$$ (and fdiss = 0.5 as fiducial). The power-law slopes asymptote to α ≈ −1.5 in low-mass dwarfs independent of cross-section, which arises from a dark matter ‘cooling flow’. Through comparisons with dark matter only simulations, we find the profile in this regime is insensitive to the inclusion of baryons. However, when $$(\sigma /m)_{\rm eff} \ll 0.1\, {\rm cm^{2}\, g^{-1}}$$, baryonic effects can produce cored density profiles comparable to non-dissipative cold dark matter (CDM) runs but at smaller radii. Simulated galaxies with $$(\sigma /m) \gtrsim 10\, {\rm cm^{2}\, g^{-1}}$$ and the fiducial fdiss develop significant coherent rotation of dark matter, accompanied by halo deformation, but this is unlike the well-defined thin ‘dark discs’ often attributed to baryon-like dSIDM. The density profiles in this high cross-section model exhibit lower normalizations given the onset of halo deformation. For our surveyed dSIDM parameters, halo masses and galaxy stellar masses do not show appreciable difference from CDM, but dark matter kinematics and halo concentrations/shapes can differ. 
    more » « less
  3. Abstract We analyze the first cosmological baryonic zoom-in simulations of galaxies in dissipative self-interacting dark matter (dSIDM). The simulations utilize the FIRE-2 galaxy formation physics with the inclusion of dissipative dark matter self-interactions modeled as a constant fractional energy dissipation (fdiss= 0.75). In this paper, we examine the properties of dwarf galaxies withM*∼ 105–109Min both isolation and within Milky Way–mass hosts. For isolated dwarfs, we find more compact galaxy sizes and promotion of disk formation in dSIDM with (σ/m) ≤ 1 cm2g−1. On the contrary, models with (σ/m) = 10 cm2g−1produce puffier stellar distributions that are in tension with the observed size–mass relation. In addition, owing to the steeper central density profiles, the subkiloparsec circular velocities of isolated dwarfs when (σ/m) ≥ 0.1 cm2g−1are enhanced by about a factor of 2, which are still consistent with the kinematic measurements of Local Group dwarfs but in tension with the Hirotation curves of more massive field dwarfs. Meanwhile, for satellites of Milky Way–mass hosts, the median circular velocity profiles are marginally affected by dSIDM physics, but dSIDM may help promote the structural diversity of dwarf satellites. The number of satellites is slightly enhanced in dSIDM, but the differences are small compared with the large host-to-host variations. In conclusion, the dSIDM models with (σ/m) ≳ 0.1 cm2g−1,fdiss= 0.75 are in tension in massive dwarfs (Mhalo∼ 1011M) due to circular velocity constraints. However, models with lower effective cross sections (at this halo mass/velocity scale) are still viable and can produce nontrivial observable signatures. 
    more » « less
  4. ABSTRACT Rotation curves of galaxies probe their total mass distributions, including dark matter. Dwarf galaxies are excellent systems to investigate the dark matter density distribution, as they tend to have larger fractions of dark matter compared to higher mass systems. The core-cusp problem describes the discrepancy found in the slope of the dark matter density profile in the centres of galaxies (β*) between observations of dwarf galaxies (shallower cores) and dark matter-only simulations (steeper cusps). We investigate β* in six nearby spiral dwarf galaxies for which high-resolution CO J = 1–0 data were obtained with ALMA (Atacama Large Millimeter/submillimeter Array). We derive rotation curves and decompose the mass profile of the dark matter using our CO rotation curves as a tracer of the total potential and 4.5 $$\mu$$m photometry to define the stellar mass distribution. We find 〈β*〉 = 0.6 with a standard deviation of ±0.1 among the galaxies in this sample, in agreement with previous measurements in this mass range. The galaxies studied are on the high stellar mass end of dwarf galaxies and have cuspier profiles than lower mass dwarfs, in agreement with other observations. When the same definition of the slope is used, we observe steeper slopes than predicted by the FIRE and NIHAO simulations. This may signal that these relatively massive dwarfs underwent stronger gas inflows towards their centres than predicted by these simulations, that these simulations overpredict the frequency of accretion or feedback events, or that a combination of these or other effects are at work. 
    more » « less
  5. Abstract Due to their inability to self-regulate, ultrafaint dwarfs are sensitive to prescriptions in subgrid physics models that converge and regulate at higher masses. We use high-resolution cosmological simulations to compare the effect of bursty star formation histories (SFHs) on dwarf galaxy structure for two different subgrid supernova (SN) feedback models, superbubble and blastwave, in dwarf galaxies with stellar masses from 5000 <M*/M< 109. We find that in the “MARVEL-ous Dwarfs” suite both feedback models produce cored galaxies and reproduce observed scaling relations for luminosity, mass, and size. Our sample accurately predicts the average stellar metallicity at higher masses, however low-mass dwarfs are metal poor relative to observed galaxies in the Local Group. We show that continuous bursty star formation and the resulting stellar feedback are able to create dark matter (DM) cores in the higher dwarf galaxy mass regime, while the majority of ultrafaint and classical dwarfs retain cuspy central DM density profiles. We find that the effective core formation peaks atM*/Mhalo≃ 5 × 10−3for both feedback models. Both subgrid SN models yield bursty SFHs at higher masses; however, galaxies simulated with superbubble feedback reach maximum mean burstiness values at lower stellar mass fractions relative to blastwave feedback. As a result, core formation may be better predicted by stellar mass fraction than the burstiness of SFHs. 
    more » « less