skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Aspects of Higgs Physics at a $$\sqrt{s}=3$$ TeV Muon Collider with detailed detector simulation
Abstract The Muon Collider is one of the most promising future collider facilities with the potential to reach multi-TeV center-of-mass energy and high luminosity. Due to the significant Higgs boson production cross section in muon-antimuon collisions at such high energies, the collider offers an excellent opportunity for in-depth exploration of Higgs boson properties. It holds the capability to significantly advance our understanding of the Higgs sector to a very high level of precision. However, the presence of beam-induced background resulting from the decay of the beam muons poses unique challenges for detector development and event reconstruction. In this paper, the prospects for measuring various Higgs boson properties at a center-of-mass energy of 3 TeV are presented, using a detailed detector simulation in a realistic environment. The study demonstrates the feasibility of achieving high precision results with the current state-of-the-art detector design. In addition, the paper discusses the detector requirements necessary to achieve this level of accuracy.  more » « less
Award ID(s):
2210533
PAR ID:
10646502
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Springer
Date Published:
Journal Name:
The European Physical Journal C
Volume:
85
Issue:
3
ISSN:
1434-6052
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract Muon colliders are an exciting possibility for reaching the highest energies possible on the shortest timescale. They potentially combine the greatest strengths of e + e − and pp colliders by bridging the energy versus precision dichotomy. In this paper we study the sensitivity of Higgs properties that can be achieved with a future 3 or 10 TeV muon collider from single Higgs production. The results presented here represent the first comprehensive picture for the precision achievable including backgrounds and using fast detector simulation with Delphes. Additionally, we compare the results of fast detector simulation with available full simulation studies that include the muon collider specific Beam Induced Background, and show the results are largely unchanged. We comment on some of the strengths and weaknesses of a high energy muon collider for Higgs physics alone, and demonstrate the complementarity of such a collider with the LHC and e + e − Higgs factories. Furthermore, we discuss some of the exciting avenues for improving future results from both theoretical and detector R&D that could be undertaken. 
    more » « less
  2. A bstract We explore the sensitivity of directly testing the muon-Higgs coupling at a high-energy muon collider. This is strongly motivated if there exists new physics that is not aligned with the Standard Model Yukawa interactions which are responsible for the fermion mass generation. We illustrate a few such examples for physics beyond the Standard Model. With the accidentally small value of the muon Yukawa coupling and its subtle role in the high-energy production of multiple (vector and Higgs) bosons, we show that it is possible to measure the muon-Higgs coupling to an accuracy of ten percent for a 10 TeV muon collider and a few percent for a 30 TeV machine by utilizing the three boson production, potentially sensitive to a new physics scale about Λ ∼ 30 − 100 TeV. 
    more » « less
  3. A bstract A search for physics beyond the standard model (SM) in final states with an electron or muon and missing transverse momentum is presented. The analysis uses data from proton-proton collisions at a centre-of-mass energy of 13 TeV, collected with the CMS detector at the LHC in 2016–2018 and corresponding to an integrated luminosity of 138 fb − 1 . No significant deviation from the SM prediction is observed. Model-independent limits are set on the production cross section of W’ bosons decaying into lepton-plus-neutrino final states. Within the framework of the sequential standard model, with the combined results from the electron and muon decay channels a W’ boson with mass less than 5.7 TeV is excluded at 95% confidence level. Results on a SM precision test, the determination of the oblique electroweak W parameter, are presented using LHC data for the first time. These results together with those from the direct W’ resonance search are used to extend existing constraints on composite Higgs scenarios. This is the first experimental exclusion on compositeness parameters using results from LHC data other than Higgs boson measurements. 
    more » « less
  4. A<sc>bstract</sc> The interpretation of Higgs data is typically based on different assumptions about whether there can be additional decay modes of the Higgs or if any couplings can be bounded by theoretical arguments. Going beyond these assumptions requires either a precision measurement of the Higgs width or an absolute measurement of a coupling to eliminate a flat direction in precision fits that occurs when$$ \left|{g}_{hVV}/{g}_{hVV}^{SM}\right| $$ g hVV / g hVV SM > 1, whereV=W±,Z. In this paper we explore how well a high energy muon collider can test Higgs physics without having to make assumptions on the total width of the Higgs. In particular, we investigate off-shell methods for Higgs production used at the LHC and searches for invisible decays of the Higgs to see how powerful they are at a muon collider. We then investigate the theoretical requirements on a model which can exist in such a flat direction. Combining expected Higgs precision with other constraints, the most dangerous flat direction is described by generalized Georgi-Machacek models. We find that by combining direct searches with Higgs precision, a high energy muon collider can robustly test single Higgs precision down to the$$ \mathcal{O}\left(.1\%\right) $$ O .1 % level without having to assume SM Higgs decays. Furthermore, it allows one to bound new contributions to the width at the sub-percent level as well. Finally, we comment on how even in this difficult flat direction for Higgs precision, a muon collider can robustly test or discover new physics in multiple ways. Expanding beyond simple coupling modifiers/EFTs, there is a large region of parameter space that muon colliders can explore for EWSB that is not probed with only standard Higgs precision observables. 
    more » « less
  5. We survey the opportunities offered by the detection of the forward muons that accompany the creation of neutral effective vector bosons at a muon collider, in different kinematic regimes. Vectors with relatively low energy produce the Higgs boson and the extended muon angular coverage enables studies of the Higgs properties, such as the measurement of the inclusive production cross section and the branching ratio to invisible final states. New heavy particles could be produced by vectors of higher energy, through Higgs portal interactions. If the new particles are invisible, the detection of the forward muons is essential in order to search for this scenario. The angular correlations of the forward muons are sensitive to the quantum interference between the vector-boson helicity amplitudes and can be exploited for the characterization of vector-boson scattering and fusion processes. This is illustrated by analyzing the C P properties of the Higgs coupling to the Z boson. Our findings provide a physics case and a set of benchmarks for the design of a dedicated forward muon detector. Published by the American Physical Society2025 
    more » « less