skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 4, 2026

Title: A Metric for Measuring the Impact of Rare Paths on Program Coverage
Fuzzing has become a popular technique for discovering bugs and vulnerabilities. To increase the probability of finding bugs, developers should apply fuzzers that maximize program coverage. Program coverage typically measures the percentage of program lines or branches a fuzzer executes. However, these metrics fail to communicate the value of hitting a particular line, branch, or path. Many bugs manifest only within non-trivial control flows. To improve software quality, fuzzing non-trivial program paths should be more important than fuzzing trivial ones. This paper introduces rare-path coverage (RP-Coverage), a novel program coverage metric that conveys the value of discovering an unlikely control flow path. We have developed a new technique for estimating the probability of taking an execution path, which relies on probabilistic logic programming to declaratively express the logic for constructing and analyzing a probabilistic control flow graph. Our evaluation indicates RP-Coverage's promise as a metric for measuring fuzzing efficacy. Specifically, we observe that defects along rare paths-intuitively-substantially impact the effectiveness of fuzzers. However, we argue that existing fuzzing metrics fall short when conveying this significance. We also observe that the value of uncovering an unlikely path is better reflected by increases in RP-Coverage than existing metrics. Specifically, the average coverage increases are up to 49.5%, 11.1 %, and 15.4 % for RP-Coverage, line coverage, and branch coverage, respectively. This finding indicates that RP-Coverage is more elastic, or sensitive, to path probabilities and thus capable of more effectively quantifying a fuzzer's ability to discover unlikely program paths. As such, RP-Coverage demonstrates promise as a program coverage metric that enhances fuzzer fitness measures when supplementing standard criteria.  more » « less
Award ID(s):
2106420
PAR ID:
10646514
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
2025 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)
Date Published:
Page Range / eLocation ID:
372 to 382
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Just, René; Fraser, Gordon (Ed.)
    Starting with a random initial seed, fuzzers search for inputs that trigger bugs or vulnerabilities. However, fuzzers often fail to generate inputs for program paths guarded by restrictive branch conditions. In this paper, we show that by first identifying rare-paths in programs (i.e., program paths with path constraints that are unlikely to be satisfied by random input generation), and then, generating inputs/seeds that trigger rare-paths, one can improve the coverage of fuzzing tools. In particular, we present techniques 1) that identify rare paths using quantitative symbolic analysis, and 2) generate inputs that can explore these rare paths using path-guided concolic execution. We provide these inputs as initial seed sets to three state of the art fuzzers. Our experimental evaluation on a set of programs shows that the fuzzers achieve better coverage with the rare-path based seed set compared to a random initial seed. 
    more » « less
  2. null (Ed.)
    Fuzz testing has been used to find bugs in programs since the 1990s, but despite decades of dedicated research, there is still no consensus on which fuzzing techniques work best. One reason for this is the paucity of ground truth: bugs in real programs with known root causes and triggering inputs are difficult to collect at a meaningful scale. Bug injection technologies that add synthetic bugs into real programs seem to offer a solution, but the differences in finding these synthetic bugs versus organic bugs have not previously been explored at a large scale. Using over 80 years of CPU time, we ran eight fuzzers across 20 targets from the Rode0day bug-finding competition and the LAVA-M corpus. Experiments were standardized with respect to compute resources and metrics gathered. These experiments show differences in fuzzer performance as well as the impact of various configuration options. For instance, it is clear that integrating symbolic execution with mutational fuzzing is very effective and that using dictionaries improves performance. Other conclusions are less clear-cut; for example, no one fuzzer beat all others on all tests. It is noteworthy that no fuzzer found any organic bugs (i.e., one reported in a CVE), despite 50 such bugs being available for discovery in the fuzzing corpus. A close analysis of results revealed a possible explanation: a dramatic difference between where synthetic and organic bugs live with respect to the "main path" discovered by fuzzers. We find that recent updates to bug injection systems have made synthetic bugs more difficult to discover, but they are still significantly easier to find than organic bugs in our target programs. Finally, this study identifies flaws in bug injection techniques and suggests a number of axes along which synthetic bugs should be improved. 
    more » « less
  3. Kernel fuzzers rely heavily on program mutation to automatically generate new test programs based on existing ones. In particular, program mutation can alter the test's control and data flow inside the kernel by inserting new system calls, changing the values of call arguments, or performing other program mutations. However, due to the complexity of the kernel code and its user-space interface, finding the effective mutation that can lead to the desired outcome such as increasing the coverage and reaching a target code location is extremely difficult, even with the widespread use of manually-crafted heuristics. This work proposes Snowplow, a kernel fuzzer that uses a learned white-box test mutator to enhance test mutation. The core of Snowplow is an efficient machine learning model that can learn to predict promising mutations given the test program to mutate, its kernel code coverage, and the desired coverage. Snowplow is demonstrated on argument mutations of the kernel tests, and evaluated on recent Linux kernel releases. When fuzzing the kernels for 24 hours, Snowplow shows a significant speedup of discovering new coverage (4.8x~5.2x) and achieves higher overall coverage (7.0%~8.6%). In a 7-day fuzzing campaign, Snowplow discovers 86 previously-unknown crashes. Furthermore, the learned mutator is shown to accelerate directed kernel fuzzing by reaching 19 target code locations 8.5x faster and two additional locations that are missed by the state-of-the-art directed kernel fuzzer. 
    more » « less
  4. Fuzzing is the art of creating data and using that generated data as input for a target program. The goal behind this is to crash the program in a manner that can be analyzed and exploited. Software developers are able to benefit from fuzzers, as they can patch the discovered vulnerabilities before an attacker exploits them. Programs are becoming larger and require improved fuzzers to keep up with the increased attack surface. Most innovations in fuzzer development are software related and provide better path coverage or data generation. This paper proposes creating a fuzzer that is designed to utilize a dedicated graphics card's graphics processing unit (GPU) instead of the standard processor. Much of the code within the fuzzer is parallelizable, meaning the graphics card could potentially process it in a much more efficient manner. The effectiveness of GPU fuzzing is assessed herein. © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. 
    more » « less
  5. Coverage-guided fuzzing has become mainstream in fuzzing to automatically expose program vulnerabilities. Recently, a group of fuzzers are proposed to adopt a random search mechanism namely Havoc, explicitly or implicitly, to augment their edge exploration. However, they only tend to adopt the default setup of Havoc as an implementation option while none of them attempts to explore its power under diverse setups or inspect its rationale for potential improvement. In this paper, to address such issues, we conduct the first empirical study on Havoc to enhance the understanding of its characteristics. Specifically, we first find that applying the default setup of Havoc to fuzzers can significantly improve their edge coverage performance. Interestingly, we further observe that even simply executing Havoc itself without appending it to any fuzzer can lead to strong edge coverage performance and outperform most of our studied fuzzers. Moreover, we also extend the execution time of Havoc and find that most fuzzers can not only achieve significantly higher edge coverage, but also tend to perform similarly (i.e., their performance gaps get largely bridged). Inspired by the findings, we further propose Havoc𝑀𝐴𝐵, which models the Havoc mutation strategy as a multi-armed bandit problem to be solved by dynamically adjusting the mutation strategy. The evaluation result presents that Havoc𝑀𝐴𝐵 can significantly increase the edge coverage by 11.1% on average for all the benchmark projects compared with Havoc and even slightly outperform state-of-the-art QSYM which augments its computing resource by adopting three parallel threads. We further execute Havoc𝑀𝐴𝐵 with three parallel threads and result in 9% higher average edge coverage over QSYM upon all the benchmark projects 
    more » « less