skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Constraint Satisfaction Problems with Advice
We initiate the study of algorithms for constraint satisfaction problems with ML oracle advice. We introduce two models of advice and then design approximation algorithms for Max Cut, Max 2-Lin, and Max 3-Lin in these models. In particular, we show the following. • For Max-Cut and Max 2-Lin, we design an algorithm that yields near-optimal solutions when the average degree is larger than a threshold degree, which only depends on the amount of advice and is independent of the instance size. We also give an algorithm for nearly satisfiable Max 3-Lin instances with quantitatively similar guarantees. • Further, we provide impossibility results for algorithms in these models. In particular, under standard complexity assumptions, we show that Max 3-Lin is still 1/2+η hard to approximate given access to advice, when there are no assumptions on the instance degree distribution. Additionally, we also show that Max 4-Lin is 1/2 + η hard to approximate even when the average degree of the instance is linear in the number of variables.  more » « less
Award ID(s):
1955173 1934843 2216899
PAR ID:
10646892
Author(s) / Creator(s):
 ; ;
Publisher / Repository:
Society for Industrial and Applied Mathematics
Date Published:
Page Range / eLocation ID:
1202 to 1221
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (Ed.)
    We consider the problem of query-efficient global max-cut on a weighted undirected graph in the value oracle model examined by [Rubinstein et al., 2018]. Graph algorithms in this cut query model and other query models have recently been studied for various other problems such as min-cut, connectivity, bipartiteness, and triangle detection. Max-cut in the cut query model can also be viewed as a natural special case of submodular function maximization: on query S ⊆ V, the oracle returns the total weight of the cut between S and V\S. Our first main technical result is a lower bound stating that a deterministic algorithm achieving a c-approximation for any c > 1/2 requires Ω(n) queries. This uses an extension of the cut dimension to rule out approximation (prior work of [Graur et al., 2020] introducing the cut dimension only rules out exact solutions). Secondly, we provide a randomized algorithm with Õ(n) queries that finds a c-approximation for any c < 1. We achieve this using a query-efficient sparsifier for undirected weighted graphs (prior work of [Rubinstein et al., 2018] holds only for unweighted graphs). To complement these results, for most constants c ∈ (0,1], we nail down the query complexity of achieving a c-approximation, for both deterministic and randomized algorithms (up to logarithmic factors). Analogously to general submodular function maximization in the same model, we observe a phase transition at c = 1/2: we design a deterministic algorithm for global c-approximate max-cut in O(log n) queries for any c < 1/2, and show that any randomized algorithm requires Ω(n/log n) queries to find a c-approximate max-cut for any c > 1/2. Additionally, we show that any deterministic algorithm requires Ω(n²) queries to find an exact max-cut (enough to learn the entire graph). 
    more » « less
  2. Nikhil, Bansal; Nagarajan, Viswanath (Ed.)
    We initiate a study of the streaming complexity of constraint satisfaction problems (CSPs) when the constraints arrive in a random order. We show that there exists a CSP, namely Max-DICUT, for which random ordering makes a provable difference. Whereas a 4/9 ≈ 0.445 approximation of DICUT requires space with adversarial ordering, we show that with random ordering of constraints there exists a 0.483-approximation algorithm that only needs O(log n) space. We also give new algorithms for Max-DICUT in variants of the adversarial ordering setting. Specifically, we give a two-pass O(log n) space 0.483-approximation algorithm for general graphs and a single-pass space 0.483-approximation algorithm for bounded-degree graphs. On the negative side, we prove that CSPs where the satisfying assignments of the constraints support a one-wise independent distribution require -space for any non-trivial approximation, even when the constraints are randomly ordered. This was previously known only for adversarially ordered constraints. Extending the results to randomly ordered constraints requires switching the hard instances from a union of random matchings to simple Erdős-Renyi random (hyper)graphs and extending tools that can perform Fourier analysis on such instances. The only CSP to have been considered previously with random ordering is Max-CUT where the ordering is not known to change the approximability. Specifically it is known to be as hard to approximate with random ordering as with adversarial ordering, for space algorithms. Our results show a richer variety of possibilities and motivate further study of CSPs with randomly ordered constraints. 
    more » « less
  3. A systematic study of simultaneous optimization of constraint satisfaction problems was initiated by Bhangale et al. [ICALP, 2015]. The simplest such problem is the simultaneous Max-Cut. Bhangale et al. [SODA, 2018] gave a .878-minimum approximation algorithm for simultaneous Max-Cut which is almost optimal assuming the Unique Games Conjecture (UGC). For single instance Max-Cut, Goemans-Williamson [JACM, 1995] gave an α_GW-approximation algorithm where α_GW ≈ .87856720... which is optimal assuming the UGC. It was left open whether one can achieve an α_GW-minimum approximation algorithm for simultaneous Max-Cut. We answer the question by showing that there exists an absolute constant ε₀ ≥ 10^{-5} such that it is NP-hard to get an (α_GW- ε₀)-minimum approximation for simultaneous Max-Cut assuming the Unique Games Conjecture. 
    more » « less
  4. Ene, Alina; Chattopadhyay, Eshan (Ed.)
    We study the classic Max-Cut problem under multiple cardinality constraints, which we refer to as the Constrained Max-Cut problem. Given a graph G = (V, E), a partition of the vertices into c disjoint parts V₁, …, V_c, and cardinality parameters k₁, …, k_c, the goal is to select a set S ⊆ V such that |S ∩ V_i| = k_i for each i ∈ [c], maximizing the total weight of edges crossing S (i.e., edges with exactly one endpoint in S).\r\nBy designing an approximate kernel for Constrained Max-Cut and building on the correlation rounding technique of Raghavendra and Tan (2012), we present a (0.858 - ε)-approximation algorithm for the problem when c = O(1). The algorithm runs in time O(min{k/ε, n}^poly(c/ε) + poly(n)), where k = ∑_{i∈[c]} k_i and n = |V|. This improves upon the (1/2 + ε₀)-approximation of Feige and Langberg (2001) for Max-Cut_k (the special case when c = 1, k₁ = k), and generalizes the (0.858 - ε)-approximation of Raghavendra and Tan (2012), which only applies when min{k,n-k} = Ω(n) and does not handle multiple constraints.\r\nWe also establish that, for general values of c, it is NP-hard to determine whether a feasible solution exists that cuts all edges. Finally, we present a 1/2-approximation algorithm for Max-Cut under an arbitrary matroid constraint. 
    more » « less
  5. We explore the use of local algorithms in the design of streaming algorithms for the Maximum Directed Cut problem. Specifically, building on the local algorithm of (Buchbinder, Feldman, Seffi, and Schwartz [14] and Censor-Hillel, Levy, and Shachnai [16]), we develop streaming algorithms for both adversarially and randomly ordered streams that approximate the value of maximum directed cut in bounded-degree graphs. In n-vertex graphs, for adversarially ordered streams, our algorithm uses O (n1-Ω(1)) (sub-linear) space and for randomly ordered streams, our algorithm uses logarithmic space. Moreover, both algorithms require only one pass over the input stream. With a constant number of passes, we give a logarithmic-space algorithm which works even on graphs with unbounded degree on adversarially ordered streams. Our algorithms achieve any fixed constant approximation factor less than 1/2. In the single-pass setting, this is tight: known lower bounds show that obtaining any constant approximation factor greater than 1/2 is impossible without using linear space in adversarially ordered streams (Kapralov and Krachun [37]) and space in randomly ordered streams, even on bounded degree graphs (Kapralov, Khanna, and Sudan [35]). In terms of techniques, our algorithms partition the vertices into a small number of different types based on the structure of their local neighborhood, ensuring that each type carries enough information about the structure to approximately simulate the local algorithm on a vertex with that type. We then develop tools to accurately estimate the frequency of each type. This allows us to simulate an execution of the local algorithm on all vertices, and thereby approximate the value of the maximum directed cut. 
    more » « less