We examine the bulk electronic structure of using Ni core-level hard x-ray photoemission spectroscopy combined with density functional theory dynamical mean-field theory. Our results reveal a large deviation of the Ni occupation from the formal valency, highlighting the importance of the charge transfer from oxygen ligands. We find that the dominant configuration is accompanied by nearly equal contributions from and states, exhibiting an unusual valence state among Ni-based oxides. Finally, we discuss the Ni and orbital-dependent hybridization, correlation and local spin dynamics. Published by the American Physical Society2025
more »
« less
This content will become publicly available on November 10, 2026
Dipolar-octupolar correlations and hierarchy of exchange interactions in Ce2Hf2O7
High-resolution neutron spectroscopy on reveals a correlated state characterized by distinct dipolar scattering signals—quasielastic and inelastic contributions consistent with ‘photon’ and ‘spinon’ excitations in quantum spin ice. These signals coexist with weak octupolar scattering. Fits of thermodynamic data using numerical methods indicate a dominant octupolar exchange, or , with substantial dipolar and minute dipole-octupole couplings. The value is corroborated by an independent fit of the neutron scattering amplitude balance between dipolar and octupolar ‘photon’ contributions, highlighting its importance to understand neutron scattering results in this family. enriches the landscape of dipole-octupole pyrochlore physics, and reveals a ‘quantum multipolar liquid’ where hybrid correlations involve multiple terms in the moment series expansion, opening questions regarding their intertwining and hierarchy in quantum phases.
more »
« less
- Award ID(s):
- 2046570
- PAR ID:
- 10646997
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review B
- Volume:
- 112
- Issue:
- 18
- ISSN:
- 2469-9950
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report the first evidence for the transition with a significance of 3.5 standard deviations. The decay branching fraction is measured to be , which is noticeably smaller than expected. We also set upper limits on transitions of , and , at the 90% confidence level. These results are obtained with a data sample collected near the resonance with the Belle detector at the KEKB asymmetric-energy collider. Published by the American Physical Society2024more » « less
-
Wurtzite ferroelectrics are attractive for microelectronics applications due to their chemical and structural compatibility with wurtzite semiconductors, such as and . However, the leakage current in epitaxial stacks reported to date should be reduced for reliable device operation. Here, we demonstrate low leakage current in epitaxial films on with well-saturated ferroelectric hysteresis loops that are orders of magnitude lower (i.e., 0.07 A ) than previously reported films (1–19 A ) having similar or better structural characteristics. We also show that, for these high-quality epitaxial films, structural quality (edge and screw dislocations), as measured by diffraction techniques, is not the dominant contributor to leakage. Instead, the small leakage in our films is limited by thermionic emission across the interfaces, which is distinct from the large leakage due to trap-mediated bulk transport in the previously reported films. To support this conclusion, we show that on lattice-matched buffers with improved structural characteristics but higher interface roughness exhibit increased leakage characteristics. This demonstration of low leakage current in heteroepitaxial films and understanding of the importance of interface barrier and surface roughness can guide further efforts toward improving the reliability of wurtzite ferroelectric devices. Published by the American Physical Society2025more » « less
-
The first observation of the decay and measurement of the branching ratio of to are presented. The and mesons are reconstructed using their dimuon decay modes. The results are based on proton-proton colliding beam data from the LHC collected by the CMS experiment at in 2016–2018, corresponding to an integrated luminosity of . The branching fraction ratio is measured to be , where the last uncertainty comes from the uncertainties in the branching fractions of the charmonium states. New measurements of the baryon mass and natural width are also presented, using the final state, where the baryon is reconstructed through the decays , , , and . Finally, the fraction of baryons produced from decays is determined. © 2024 CERN, for the CMS Collaboration2024CERNmore » « less
-
Measurements of the polarization observables for the reaction using a linearly polarized photon beam of energy 1.1 to 2.1 GeV are reported. The measured data provide information on a channel that has not been studied extensively, but is required for a full coupled-channel analysis in the nucleon resonance region. Observables have been simultaneously extracted using likelihood sampling with a Markov-Chain Monte Carlo process. Angular distributions in bins of photon energy are produced for each polarization observable. , and are first time measurements of these observables in this reaction. The extraction of extends the energy range beyond a previous measurement. The measurement of , the recoil polarization, is consistent with previous measurements. The measured data are shown to be significant enough to affect the estimation of the nucleon resonance parameters when fitted within a coupled-channels model. Published by the American Physical Society2025more » « less
An official website of the United States government
