skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 22, 2026

Title: Metabolic biochemical models of N 2 fixation for sulfide oxidizers, methanogens, and methanotrophs
ABSTRACT Dinitrogen (N2) fixation provides bioavailable nitrogen to the biosphere. However, in some habitats (e.g., sediments), the metabolic pathways of organisms carrying out N2fixation are unclear. We present metabolic models representing various chemotrophic N2fixers, which simulate potential pathways of electron transport and energy flow, resulting in predictions of whole-cell stoichiometries. By balancing mass, electrons, and energy for metabolic half-reactions, we quantify the electron usage for nine N2fixers. Our results demonstrate that all modeled organisms fix sufficient N2for growth. Aerobic organisms allocate more electrons to N2fixation and growth, yielding more biomass and fixing more N2, while methanogens using acetate and organisms using sulfate allocate fewer electrons. This work can be applied to investigate the depth distribution of N2fixers based on nutrient availability, complementing field measurements of biogeochemical processes and microbial communities.IMPORTANCEN2fixation is an important process in the global N cycle. Researchers have developed models for heterotrophic and photoautotrophic N2fixers, but there is a lack of modeling studies on chemoautotrophic N2fixers. Here, we built nine biochemical models for different chemoautotrophic N2fixers by combining different types of half-chemical reactions. We include three sulfide oxidizers using different electron acceptors (O2, NO3, and Fe3+), contributing to the sulfur, nitrogen, and iron cycles in the sediment. We have two methanogens using different substrates (H2and acetate) and four methanotrophs using different electron acceptors (O2, NO3, Fe3+, and SO42−). By modeling these methane producers and users in the sediment and their N2-fixing metabolic pathways, our work can provide insight for future carbon cycle studies. This study outlines various metabolic pathways that can facilitate N2fixation, with implications for where in the environment they might occur.  more » « less
Award ID(s):
2015825
PAR ID:
10647072
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Editor(s):
Fahimipour, Ashkaan K
Publisher / Repository:
ASM
Date Published:
Journal Name:
mSystems
Volume:
10
Issue:
10
ISSN:
2379-5077
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract AimNitrogen (N)‐fixing plants are an important component of global plant communities, but the drivers of N‐fixing plant diversity, especially in temperate regions, remain underexplored. Here, we examined broad‐scale patterns of N‐fixing and non‐fixing plant phylogenetic diversity (PD) and species richness (SR) across a wide portion of temperate North America, focusing on relationships with soil N and aridity. We also tested whether exotic species, with and without N‐fixing symbiosis, have fewer abiotic limitations compared with native species. LocationUSA and Puerto Rico. Time periodCurrent. Major taxa studiedVascular plants, focusing on N‐fixing groups (orders Fabales, Fagales, Rosales and Cucurbitales). MethodsWe subset National Ecological Observatory Network (NEON) plant plot data from all sites along two axes (N fixing–non‐N fixing and native–exotic), calculating plot‐level SR, PD and mean pairwise phylogenetic distance (MPD). We then used linear mixed models to investigate relationships between diversity values and key soil measurements, along with aridity, temperature and fire frequency. ResultsAridity was the sole predictor of proportional phylogenetic diversity of N fixers. The SR of N fixers still decreased marginally in arid regions, whereas native N‐fixer MPD increased with aridity, indicative of unique lineages of N fixers in the driest conditions, in contrast to native non‐N fixers. The SR of both native N fixers and non‐N fixers increased in low‐N soils. Aridity did not affect SR of exotic non‐N fixers, unlike other groups, whereas exotic N fixers showed lower MPD in increasingly high‐N soils, suggesting filtering, contrary what was found for native N fixers. Main conclusionsOur results suggest that it is not nitrogen, or any soil nutrient, that has the strongest effect on the relative success of N fixers in plant communities. Rather, aridity is the key driver, at least for native species, in line with empirical results from other biomes and increased understanding of N fixation as a key mechanism to avoid water loss. 
    more » « less
  2. Summary Biological nitrogen fixation is catalyzed by the molybdenum (Mo), vanadium (V) and iron (Fe)‐only nitrogenase metalloenzymes. Studies with purified enzymes have found that the ‘alternative’ V‐ and Fe‐nitrogenases generally reduce N2more slowly and produce more byproduct H2than the Mo‐nitrogenase, leading to an assumption that their usage results in slower growth. Here we show that, in the metabolically versatile photoheterotrophRhodopseudomonas palustris, the type of carbon substrate influences the relative rates of diazotrophic growth based on different nitrogenase isoforms. The V‐nitrogenase supports growth as fast as the Mo‐nitrogenase on acetate but not on the more oxidized substrate succinate. Our data suggest that this is due to insufficient electron flux to the V‐nitrogenase isoform on succinate compared with acetate. Despite slightly faster growth based on the V‐nitrogenase on acetate, the wild‐type strain uses exclusively the Mo‐nitrogenase on both carbon substrates. Notably, the differences in H2:N2stoichiometry by alternative nitrogenases (~1.5 for V‐nitrogenase, ~4–7 for Fe‐nitrogenase) and Mo‐nitrogenase (~1) measured here are lower than priorin vitroestimates. These results indicate that the metabolic costs of V‐based nitrogen fixation could be less significant for growth than previously assumed, helping explain why alternative nitrogenase genes persist in diverse diazotroph lineages and are broadly distributed in the environment. 
    more » « less
  3. Abstract Life on Earth depends on N2‐fixing microbes to make ammonia from atmospheric N2gas by the nitrogenase enzyme. Most nitrogenases use Mo as a cofactor; however, V and Fe are also possible. N2fixation was once believed to have evolved during the Archean‐Proterozoic times using Fe as a cofactor. However, δ15N values of paleo‐ocean sediments suggest Mo and V cofactors despite their low concentrations in the paleo‐oceans. This apparent paradox is based on an untested assumption that only soluble metals are bioavailable. In this study, laboratory experiments were performed to test the bioavailability of mineral‐associated trace metals to a model N2‐fixing bacteriumAzotobacter vinelandii. N2fixation was observed when Mo in molybdenite, V in cavansite, and Fe in ferrihydrite were used as the sole sources of cofactors, but the rate of N2fixation was greatly reduced. A physical separation between minerals and cells further reduced the rate of N2fixation. Biochemical assays detected five siderophores, including aminochelin, azotochelin, azotobactin, protochelin, and vibrioferrin, as possible chelators to extract metals from minerals. The results of this study demonstrate that mineral‐associated trace metals are bioavailable as cofactors of nitrogenases to support N2fixation in those environments that lack soluble trace metals and may offer a partial answer to the paradox. 
    more » « less
  4. Bose, Arpita (Ed.)
    ABSTRACT Using dissolved inorganic carbon (DIC) as a major carbon source, as autotrophs do, is complicated by the bedeviling nature of this substance. Autotrophs using the Calvin-Benson-Bassham cycle (CBB) are known to make use of a toolkit comprised of DIC transporters and carbonic anhydrase enzymes (CA) to facilitate DIC fixation. This minireview provides a brief overview of the current understanding of how toolkit function facilitates DIC fixation inCyanobacteriaand someProteobacteriausing the CBB and continues with a survey of the DIC toolkit gene presence in organisms using different versions of the CBB and other autotrophic pathways (reductive citric acid cycle, Wood-Ljungdahl pathway, hydroxypropionate bicycle, hydroxypropionate-hydroxybutyrate cycle, and dicarboxylate-hydroxybutyrate cycle). The potential function of toolkit gene products in these organisms is discussed in terms of CO2and HCO3supply from the environment and demand by the autotrophic pathway. The presence of DIC toolkit genes in autotrophic organisms beyond those using the CBB suggests the relevance of DIC metabolism to these organisms and provides a basis for better engineering of these organisms for industrial and agricultural purposes. 
    more » « less
  5. Gralnick, Jeffrey A. (Ed.)
    ABSTRACT Rhodopseudomonas palustris CGA009 is a Gram-negative purple nonsulfur bacterium that grows phototrophically by fixing carbon dioxide and nitrogen or chemotrophically by fixing or catabolizing a wide array of substrates, including lignin breakdown products for its carbon and fixing nitrogen for its nitrogen requirements. It can grow aerobically or anaerobically and can use light, inorganic, and organic compounds for energy production. Due to its ability to convert different carbon sources into useful products during anaerobic growth, this study reconstructed a metabolic and expression (ME) model of R. palustris to investigate its anaerobic-photoheterotrophic growth. Unlike metabolic (M) models, ME models include transcription and translation reactions along with macromolecules synthesis and couple these reactions with growth rate. This unique feature of the ME model led to nonlinear growth curve predictions, which matched closely with experimental growth rate data. At the theoretical maximum growth rate, the ME model suggested a diminishing rate of carbon fixation and predicted malate dehydrogenase and glycerol-3 phosphate dehydrogenase as alternate electron sinks. Moreover, the ME model also identified ferredoxin as a key regulator in distributing electrons between major redox balancing pathways. Because ME models include the turnover rate for each metabolic reaction, it was used to successfully capture experimentally observed temperature regulation of different nitrogenases. Overall, these unique features of the ME model demonstrated the influence of nitrogenases and rubiscos on R. palustris growth and predicted a key regulator in distributing electrons between major redox balancing pathways, thus establishing a platform for in silico investigation of R. palustris metabolism from a multiomics perspective. IMPORTANCE In this work, we reconstructed the first ME model for a purple nonsulfur bacterium (PNSB). Using the ME model, different aspects of R. palustris metabolism were examined. First, the ME model was used to analyze how reducing power entering the R. palustris cell through organic carbon sources gets partitioned into biomass, carbon dioxide fixation, and nitrogen fixation. Furthermore, the ME model predicted electron flux through ferredoxin as a major bottleneck in distributing electrons to nitrogenase enzymes. Next, the ME model characterized different nitrogenase enzymes and successfully recapitulated experimentally observed temperature regulations of those enzymes. Identifying the bottleneck responsible for transferring an electron to nitrogenase enzymes and recapitulating the temperature regulation of different nitrogenase enzymes can have profound implications in metabolic engineering, such as hydrogen production from R. palustris . Another interesting application of this ME model can be to take advantage of its redox balancing strategy to gain an understanding of the regulatory mechanism of biodegradable plastic production precursors, such as polyhydroxybutyrate (PHB). 
    more » « less