skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Symbiotic Approach for Developing Shoreline Infrastructure
Abstract This research project presents an alternative approach to addressing the complex challenges of sustainability of the coastlines by integrating advanced technology solutions with ecological conservation principles. The paper introduces the Ecoblox, a modular infrastructure system consisting of interlocking blocks devised for attachment to seawalls to improve marine biodiversity at the water edge. The design of the Ecoblox system employs environmental data, data analytics, AI-powered generative algorithms, and digital fabrication to produce blocks with complex shapes and textures suitable for bio-marine habitats. The project is executed in two phases. This paper describes the initial phase, encompassing the prototyping process, construction, testing, and analysis of various Ecoblox versions. The primary objective of this phase is to assess multiple designs and evaluate their effects on biodiversity. Building upon the insights gained from the initial phase, Phase II of the study focuses on developing data-driven strategies and applying robotic 3D printing to refine the system’s design and construction.  more » « less
Award ID(s):
2329345
PAR ID:
10647103
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Nature Singapore
Date Published:
Page Range / eLocation ID:
46 to 54
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Historically, ornament has provided a tether to cultural meaning in the built world. Ornament is tied to specific cultural attributes. As an integral part of the construction, ornament negotiates with the culture from which it emerges. It is a built grammar, but it is also expressive of its own making as well as the society that shaped it. Modernity has largely reversed this connection with some important exceptions. There is a strong history of architects developing space through the design of the construction that provides what Louis Sullivan would call an “organic” link to the ornament that emerges, and this nexus of structure and form becomes the “site” of the ornament. Luigi Nervi’s ferro-cement shells and Frank Lloyd Wright’s textile blocks are two salient examples that have, through necessity or interest, developed details that generate entire projects, which then generate new projects as that construction/detail is refined and builds on the culture that inspired it. Ornament is thus a negotiation between the built artifact and the meaning of its “ornamented” expression. As architects, we now operate in a world of off-the-shelf selected components. This attitude, combined with the integration of building components into BIM programs, has made the architect a selector/consumer rather than a designer of the construction, making ornament a part of this selection process – i.e., decoration. The research project Woven Blocks is an attempt to reexamine the way in which architects can shape space through the design of the construction itself. Pulling from Frank Lloyd Wright’s textile block system, Woven Blocks imagines a 3D-printed block capable of taking advantage of a self-supporting system of enclosure that can be “programmed” with function, take on aspects of the context it resides in, and reflect the nature of its making. The project is the design of the manufacturing process as well as its end-product. This enables the building material to respond directly to its program, shaping space/meaning in potentially a more “plastic” way. This paper is first a consideration of architects thinking through construction, then a reflection on the cultural implication of their production. The site of ornament also implies a shift in perception from the textile patterns of specific cultures found in ceramics, clothing, wall mats, or flooring onto the building surface and into its lashing to the frame and the integration of its various services/systems. This lens will serve to frame the research around the project Woven Blocks, examining the efforts of the authors to shape the process of construction as a place from which ornament can emerge and meaning can be rediscovered. 
    more » « less
  2. Turkan, Y. and (Ed.)
    Advances in construction robotics represent a potential shift in building design and construction. In general, construction robotics are usually deployed directly onto construction sites without systematically evaluating the design constructability for robotic applications. Literature on constructability suggest that ignoring it during design will cause rework, inefficiency, and higher cost. Although previous studies have widely discussed design constructability, they mainly focus on traditional human craft-based construction methods. Whereas a gap still exists in design constructability assessment for construction robotics. This paper presents an initial analytical framework for constructability assessment for construction robotics during the design phase. Specifically, we summarize factors that impact robotic constructability based on robotic features, design features, work constraints, and piloted an automated constructability checking system for robotics. Additionally, this study takes CANVAS, a drywall finishing robot, as case study to create a framework in simulation environment and the results demonstrate the potential value of the proposed framework. 
    more » « less
  3. The application of Augmented Reality (AR) in construction is transforming how non-expert users engage with complex assembly processes, with its potential to foster broader community involvement in urban space production remaining underexplored. This paper presents an integrated framework that incorporates AR-enabled phygital instructions with timber dowel structures, facilitating the active participation of non-experts in the design-to-production process of an urban community food podium. By leveraging AR and computational design, the system bridges the gap between expert and non-expert users, enabling wider participation in the construction process while maintaining precision through robotic fabrication and step-by-step digital guidance. Tested within a graduate-level course and showcased at a public event, the project aims to empower community members to engage in production and assembly, offering insights into participatory urban design and co-production. The results demonstrate the capacity of augmented fabrication to enhance human agency, making complex construction tasks accessible and collaborative, and paving the way for resource-driven, community-enabling urban developments. 
    more » « less
  4. Abstract Current information on the status and trends of ocean change is needed to support effective and responsive management, particularly for the deep ocean. Creating consistent, collaborative and actionable mechanisms is a key component of the Deep Ocean Observing Strategy, a program of the United Nations Decade of Ocean Science for Sustainable Development. Here, we share an iterative, agile, and human-centred approach to co-designing datastreams for deep-sea indicators that serves stakeholders, including US National Marine Sanctuaries, presented as a four-phase project roadmap initially focused on the Monterey Bay National Marine Sanctuary, and then generalized to other areas such as the US West Coast, offshore wind development areas, and managed marine spaces globally. Ongoing efforts to provide key physical, biogeochemical, biological, and ecosystem variables for California's Marine Protected Areas are informing this co-design process. We share lessons learned so far and present co-design as a useful tool for (1) assessing the availability of information from deep ecosystems, (2) ensuring interoperability, and (3) providing essential information on the status and trends of indicators. Documenting and sharing this co-design strategy and scalable four-phase roadmap will further the aims of DOOS and other initiatives, including the Deep Ocean Stewardship Initiative and Challenger 150. 
    more » « less
  5. Chen, Qian; Zhang, Xin (Ed.)
    Abstract Over the last several decades, colloidal nanoparticles have evolved into a prominent class of building blocks for materials design. Important advances include the synthesis of uniform nanoparticles with tailored compositions and properties, and the precision construction of intricate, higher-level structures from nanoparticles via self-assembly. Grasping the modern complexity of nanoparticles and their superstructures requires fundamental understandings of the processes of nanoparticle growth and self-assembly.In situliquid phase transmission electron microscopy (TEM) has significantly advanced our understanding of these dynamic processes by allowing direct observation of how individual atoms and nanoparticles interact in real time, in their native phases. In this article, we highlight diverse nucleation and growth pathways of nanoparticles in solution that could be elucidated by thein situliquid phase TEM. Furthermore, we showcasein situliquid phase TEM studies of nanoparticle self-assembly pathways, highlighting the complex interplay among nanoparticles, ligands, and solvents. The mechanistic insights gained fromin situliquid phase TEM investigation could inform the design and synthesis of novel nanomaterials for various applications such as catalysis, energy conversion, and optoelectronic devices. Graphical abstract 
    more » « less