The rebound of droplets impacting a deep fluid bath is studied both experimentally and theoretically. Millimetric drops are generated using a piezoelectric droplet-on-demand generator and normally impact a bath of the same fluid. Measurements of the droplet trajectory and other rebound metrics are compared directly with the predictions of a linear quasipotential model, as well as fully resolved direct numerical simulations of the unsteady Navier–Stokes equations. Both models resolve the time-dependent bath and droplet shapes in addition to the droplet trajectory. In the quasipotential model, the droplet and bath shape are decomposed using orthogonal function decompositions leading to two sets of coupled damped linear harmonic oscillator equations solved using an implicit numerical method. The underdamped dynamics of the drop are directly coupled to the response of the bath through a single-point kinematic match condition which we demonstrate to be an effective and efficient model in our parameter regime of interest. Starting from the inertio-capillary limit in which both gravitational and viscous effects are negligible, increases in gravity or viscosity lead to a decrease in the coefficient of restitution and an increase in the contact time. The inertio-capillary limit defines an upper bound on the possible coefficient of restitution for droplet–bath impact, depending only on the Weber number. The quasipotential model is able to rationalize historical experimental measurements for the coefficient of restitution, first presented by Jayaratne & Mason ( Proc. R. Soc. Lond. A, vol. 280, issue 1383, 1964, pp. 545–565).
more »
« less
Inertio-Capillary Impacts
Droplet impacts are of fundamental importance to the natural water cycle as collision and coalescence of droplets are the primary mechanism by which warm rain forms. Additionally, droplet impacts are of paramount significance in a variety of industrial processes, including spray cooling, wet scrubbing, and even play a role in cooling nuclear reactors. Throughout this work, we utilize a combination of theoretical mod- eling and experiments to elucidate the dynamics of these common phenomena. The first problem we analyze is a droplet impacting a deep fluid bath. Millimetric drops are generated using a piezoelectric droplet-on-demand generator and normally impact a bath of the same fluid. The limit where capillarity and fluid inertia dominate the interfacial dynamics is investigated. This so-called inertio-capillary limit is shown to define an upper bound on the possible coefficient of restitution for droplet–bath im- pact. We then consider the scenario where the substrate is no longer deformable, and study the dynamics of non-wetting droplets impacting on stationary and vibrating substrates, with deterministic chaos emerging in the latter case. Extending beyond axisymmetric impacts, we then analyze droplet impact scenarios where there is some relative tangential velocity between the substrate and droplet. We determine the thresholds for coalescence, and our results suggest that substrate deformability plays an important role in transitions between the bouncing and merging regimes. Finally, we consider an analogous solid case to the normal droplet impact studies, where a small rigid sphere impacts and rebounds from a deformable elastic membrane. We perform experiments and identify new previously unreported behaviors in this simple system which are attributed to the non-negligible inertia of the membrane. Overall, the dynamics of these impact scenarios are extremely rich, producing physical phe- nomena that are inherently multi-scale, requiring information and knowledge from micron to centimeter scales. As showcased here, reduced-order modeling and con- trolled experiments are essential in distilling some simplicity out of the complexity.
more »
« less
- Award ID(s):
- 2123371
- PAR ID:
- 10647139
- Publisher / Repository:
- Brown Digital Repository
- Date Published:
- Format(s):
- Medium: X
- Institution:
- Brown University
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Droplet impact on oscillating substrates is important for both natural and industrial processes. Recognizing the importance of the dynamics that arises from the interplay between droplet transport and substrate motion, in this work, we present an experimental investigation of the spreading of a droplet impacting a sinusoidally oscillating hydrophobic substrate. We focus particularly on the maximum spread of droplets as a function of various parameters of substrate oscillation. We first quantify the maximum spreading diameter attained by the droplets as a function of frequency, amplitude of vibration, and phase at the impact for various impact velocities. We highlight that there can be two stages of spreading. Stage I, which is observed at all impact conditions, is controlled by the droplet inertia and affected by the substrate oscillation. For certain conditions, a Stage II spreading is also observed, which occurs during the retraction process of Stage I due to additional energies imparted by the substrate oscillation. Subsequently, we derive scaling analyses to predict the maximum spreading diameters and the time for this maximum spread for both Stage I and Stage II. Furthermore, we identify the necessary condition for Stage II spreading to be greater than Stage I spreading. The results will enable optimization of the parameters in applications where substrate oscillation is used to control the droplet spread, and thus heat and mass transfer between the droplet and the substrate.more » « less
-
Droplet impacts on solid surfaces produce a wide variety of phenomena such as spreading, splashing, jetting, receding, and rebounding. In microholed surfaces, downward jets through the hole can be caused by the high impact inertia during the spreading phase of the droplet over the substrate as well as the cavity collapse during recoil phase of the droplet. We investigate the dynamics of the jet formed through the single hole during the impacting phase of the droplet on a micro-holed hydrophilic substrate. The sub-millimeter circular holes are created on the 0.2 mm-thickness hydrophilic plastic films using a 0.5 mm punch. Great care has been taken to ensure that the millimeter-sized droplets of water dispensed by a syringe pump through a micropipette tip can impact directly over the micro-holes. A high-speed video photography camera is employed to capture the full event of impacting and jetting. A MATLAB code has been developed to process the captured videos for data analysis. We study the effect of impact velocity on the jet formation including jet velocity, ejected droplet volume, and breakup process. We find that the Weber number significantly affects outcomes of the drop impact and jetting mechanism. We also examine the dynamic contact angle of the contact line during the spreading and the receding phase.more » « less
-
Abstract In order to improve the quality of products during additive manufacturing, we developed a novel freezing sublimation-based method for inkjet-based three-dimensional (3D) printing technology, which can significantly improve the uniformity of material distribution in printed products. In our previous studies, we used a laboratory prototype with single droplets of inkjet solution containing colloidal particles to prove the concept of this study. However, understanding the interaction between droplets on the printing substrate surface is also crucial for determining the printing resolution and accuracy of this method, which cannot be fully investigated through single droplet-based experimental studies. To fill this knowledge gap, we conducted a series of experiments on colloidal droplet impingement, freezing, and sublimation on substrates using dual droplets. The experimental setup allowed the release of two droplets in quick succession from a modified nozzle with two needles. These droplets coalesced on the substrate surface due to spreading during their impingement processes. Observations revealed that the coalescence pattern of these two droplets varied depending on the time interval between their release. When the second droplet was released immediately after the first, their coalescence was governed by fluid dynamics. However, when the second droplet was released after the first droplet had frozen on the substrate, it spread above the ice surface of the first droplet in a relatively slower process. This observation provides new insights for the continued study and optimization of the proposed novel freezing sublimation-based 3D printing method.more » « less
-
Capillary droplets form due to surface tension when two immiscible fluids are mixed. We describe the motion of gravity-driven capillary droplets flowing through narrow constrictions and obstacle arrays in both simulations and experiments. Our new capillary deformable particle model recapitulates the shape and velocity of single oil droplets in water as they pass through narrow constrictions in microfluidic chambers. Using this experimentally validated model, we simulate the flow and clogging of single capillary droplets in narrow channels and obstacle arrays and find several important results. First, the capillary droplet speed profile is nonmonotonic as the droplet exits the narrow orifice, and we can tune the droplet properties so that the speed overshoots the terminal speed far from the constriction. Second, in obstacle arrays, we find that extremely deformable droplets can wrap around obstacles, which leads to decreased average droplet speed in the continuous flow regime and increased probability for clogging in the regime where permanent clogs form. Third, the wrapping mechanism causes the clogging probability in obstacle arrays to become nonmonotonic with surface tension Γ. At large Γ, the droplets are nearly rigid and the clogging probability is large since the droplets can not squeeze through the gaps between obstacles. With decreasing Γ, the clogging probability decreases as the droplets become more deformable. However, in the small-Γ limit, the clogging probability increases since the droplets are extremely deformable and wrap around the obstacles. The results from these studies are important for developing a predictive understanding of capillary droplet flows through complex and confined geometries.more » « less
An official website of the United States government

