skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 21, 2026

Title: The role of effective mass on semiconductor charge carrier localization as revealed by the split operator method
Charge carriers in a solid-state material are modeled as free particles with a variable “effective” mass that is derived from the curvature of the conduction/valence band. These effective masses of electrons and holes are unique to each material and are dependent on the internal band structure (e.g., heavy vs light holes). Quantum mechanical characterizations of nanomaterials employ effective mass theory using particle-in-a-box paradigms to calculate quantum confinement (i.e., localization) energies. However, semiconductor heterostructures, such as core/shell quantum dots, have spatially variant masses, and as a result, the Schrodinger equation must be solved via a numerical approach incorporating the Hermitian kinetic energy operator T̂∼∇m−1x∇. To this end, the split operator “spectral” method was modified with the variable mass kinetic energy operator to study a variety of core/shell quantum dots. The results reveal a preferential localization of charge carriers into regions of high effective mass, which has a non-negligible effect on structure/property relationships that are increasingly being used to guide the synthesis of semiconductor heterostructures, such as “giant” type II quantum dots.  more » « less
Award ID(s):
2345581
PAR ID:
10647240
Author(s) / Creator(s):
;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
163
Issue:
7
ISSN:
0021-9606
Subject(s) / Keyword(s):
Quantum confinement Effective mass Quantum dots Semiconductors Split-operator method Spectral methods Nanomaterials Schrodinger equations
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The utility of colloidal semiconductor quantum dots as a source of photons and charge carriers for photonic and photovoltaic applications has created a large field of research focused on tailoring and broadening their functionality beyond what an exciton can provide. One approach towards expanding the range of characteristics of photons and charge carriers from quantum dots is through doping impurity ions ( e.g. Mn 2+ , Cu + , and Yb 3+ ) in the host quantum dots. In addition to the progress in synthesis enabling fine control of the structure of the doped quantum dots, a mechanistic understanding of the underlying processes correlated with the structure has been crucial in revealing the full potential of the doped quantum dots as the source of photons and charge carriers. In this review, we discuss the recent progress made in gaining microscopic understanding of the photophysical pathways that give rise to unique dopant-related luminescence and the generation of energetic hot electrons via exciton-to-hot electron upconversion. 
    more » « less
  2. Carbon and semiconductor nanoparticles are promising photothermal materials for various solar-driven applications. Inevitable recombination of photoinduced charge carriers in a single constituent, however, hinders the realization of a greater photothermal effect. Core–shell heterostructures utilizing the donor–acceptor pair concept with high-quality interfaces can inhibit energy loss from the radiation relaxation of excited species, thereby enhancing the photothermal effect. Here, core–shell structures composed of a covellite (CuS) shell (acceptor) and spherical carbon nanoparticle (CP) core (donor) (abbreviated as CP/CuS) are proposed to augment the photothermal conversion efficiency via the Förster resonance energy transfer (FRET) mechanism. The close proximity and spectral overlap of the donor and acceptor trigger the FRET mechanism, where the electronic excitation relaxation energy of the CP reinforces the plasmonic resonance and near-infrared absorption in CuS, resulting in boosting the overall photothermal conversion efficiency. CP/CuS core–shell coated on polyurethane (PU) foam exhibits a total solar absorption of 97.1%, leading to an elevation in surface temperature of 61.6 °C in dry conditions under simulated solar illumination at a power density of 1 kW m–2 (i.e., 1 sun). Leveraging the enhanced photothermal conversion emanated from the energy transfer effect in the core–shell structure, CP/CuS-coated PU foam achieves an evaporation rate of 1.62 kg m–2 h–1 and an energy efficiency of 93.8%. Thus, amplifying photothermal energy generation in core–shell structures via resonance energy transfer can be promising in solar energy-driven applications and thus merits further exploration. 
    more » « less
  3. We use experimental and computational studies of core–shell metal–semiconductor and metal–molecule systems to investigate the mechanism of energy flow and energetic charge carrier generation in multicomponent plasmonic systems. We demonstrate that the rates of plasmon decay through the formation of energetic charge carriers are governed by two factors: (1) the intensity of the local plasmon induced electric fields at a specific location in the multicomponent nanostructure, and (2) the availability of direct, momentum conserved electronic excitations in the material located in that specific location. We propose a unifying physical framework that describes the flow of energy in all multicomponent plasmonic systems and leads us towards molecular control of the energy flow and excited charge carrier generation in these systems. 
    more » « less
  4. A single photoexcited electron−hole pair within a polar semiconductor nanocrystal (SNC) alters the charge screening and shielding within it. Perturbations of the crystal lattice and of the valence and conduction bands result, and the quantum-confinement states in a SNC shift uniquely with a dependence on the states occupied by the carriers. This shifting is termed quantum-state renormalization (QSR). This Perspective highlights QSR in semiconductor quantum wires and dots identified in time-resolved transient absorption and two-dimensional electronic spectroscopy experiments. Beyond the interest in understanding the principles of QSR and energy-coupling mechanisms, we pose the contributions of QSR in time-resolved spectroscopy data must be accounted for to accurately identify the time scales for intraband relaxation of the carriers within SNCs. 
    more » « less
  5. Photoinduced nonequilibrium processes in nanoscale materials play key roles in photovoltaic and photocatalytic applications. This review summarizes recent theoretical investigations of excited state dynamics in metal halide perovskites (MHPs), carried out using a state-of-the-art methodology combining nonadiabatic molecular dynamics with real-time time-dependent density functional theory. The simulations allow one to study evolution of charge carriers at the ab initio level and in the time-domain, in direct connection with time-resolved spectroscopy experiments. Eliminating the need for the common approximations, such as harmonic phonons, a choice of the reaction coordinate, weak electron–phonon coupling, a particular kinetic mechanism, and perturbative calculation of rate constants, we model full-dimensional quantum dynamics of electrons coupled to semiclassical vibrations. We study realistic aspects of material composition and structure and their influence on various nonequilibrium processes, including nonradiative trapping and relaxation of charge carriers, hot carrier cooling and luminescence, Auger-type charge–charge scattering, multiple excitons generation and recombination, charge and energy transfer between donor and acceptor materials, and charge recombination inside individual materials and across donor/acceptor interfaces. These phenomena are illustrated with representative materials and interfaces. Focus is placed on response to external perturbations, formation of point defects and their passivation, mixed stoichiometries, dopants, grain boundaries, and interfaces of MHPs with charge transport layers, and quantum confinement. In addition to bulk materials, perovskite quantum dots and 2D perovskites with different layer and spacer cation structures, edge passivation, and dielectric screening are discussed. The atomistic insights into excited state dynamics under realistic conditions provide the fundamental understanding needed for design of advanced solar energy and optoelectronic devices. 
    more » « less