Abstract We summarize national-scale data for Ph.D. earners in engineering or computer science from 2015 to 2019 whose post-graduate school employment is known, highlighting outcomes for biological/biomedical/biosystems engineering students. We use NSF’s Survey of Earned Doctorates (SED), which has collected information from Ph.D. recipients in the USA since 1957. The data are collected at the time of degree completion and constitute a greater than 90% response rate. Compared to all engineering and computer science disciplines, biological/biomedical/biosystems engineering has a higher proportion going to 4yr/med/research institutions (52% vs. 33%) and non-profit (3.6% vs. 2.9%) and lower proportion going to industry (33% vs. 48%), government (4.3% vs. 8.4%), and is similar for non-US positions (6.1% vs. 5.7%). Compared to 2010–2014 biological/biomedical/biosystems engineering Ph.D. recipients, more 2015–2019 recipients are going to industry (25% to 33%) and fewer to 4yr/med/research institutions (59% to 52%) and governmet (5.3% to 4.3%). Across all engineering and computer science disciplines, a smaller proportion of females entered industry (43%) compared to males (49%), while a larger proportion of females entered 4yr/med/research institutions (37%) compared to males (32%). Over half of Asian doctoral recipients entered industry, as compared to 38% of Hispanic doctoral recipients. In contrast, a higher proportion of Hispanic individuals (37%) entered 4yr/med/research institutions after their doctoral programs, as compared to 31% of Asian doctoral recipients. Black doctoral recipients had the highest proportion enter positions in government (14%) and non-profit (4%) sectors. Our results are situated in the broader literature focused on postdoctoral career, training, and employment sectors and trends in STEM. We discuss implications for graduate programs, policymakers, and researchers.
more »
« less
This content will become publicly available on August 11, 2026
Curriculum Design in an Evolving Field: Perspectives on Biomedical Data Science from Stanford
In recent decades, there has been an explosion of data streams spanning the entire spectrum of biomedicine, opening novel opportunities to tackle biological and medical research questions, increasing our ability to provide effective and efficient health care. In parallel, augmented computational power has allowed the development and deployment of quantitative approaches at unprecedented scales. To effectively take advantage of this progress, it is important to invest in the training of a new generation of biomedical data scientists. Designing a graduate curriculum in the backdrop of a rapidly changing landscape of data, methods, and computing power demands flexibility and openness to adaptation. At the same time, we strive to ensure that the students acquire foundational competencies that might fuel productive and evolving careers, without being constrained to and defined by a niche trendy topic. We offer here a view of graduate training in biomedical data science from the standpoint of our experience at Stanford University. We conclude with a series of open challenges, the answers to which we believe will shape training in biomedical data science.
more »
« less
- Award ID(s):
- 2210392
- PAR ID:
- 10647340
- Publisher / Repository:
- Annual Reviews
- Date Published:
- Journal Name:
- Annual Review of Biomedical Data Science
- Volume:
- 8
- Issue:
- 1
- ISSN:
- 2574-3414
- Page Range / eLocation ID:
- 341 to 354
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Background Analysis of the biomedical workforce and graduate education have produced recommendations for modifications of pre-doctoral training to broadly prepare trainees for wider ranging scientific careers. Development of training in professional skills is widely recommended, but details of implementation are not widely available. In alignment with these recommendations, we have incorporated professional skills training into the biomedical science graduate curriculum at West Virginia University. An important component of the training is developing conflict resolution and negotiation skills. This training will provide useful skills for academic careers, non-academic careers and life situations outside of the workplace. Conflict resolution/negotiation skills are also relevant in managing issues in diversity, equity and inclusivity. We report our experience in developing this component of the training program, provide an overview of the approach to delivery and practice of skills, and provide an analysis of the reception and effectiveness of the training. Methods Evaluation of effectiveness of training used the principals of the Kirkpatrick Four Level Model of Evaluation. At the end of the course, students completed a questionnaire about their perceptions of training and were asked how they would respond to different scenarios requiring conflict resolution/negotiation skills. Several months later, students were surveyed to determine if they used some of these skills and/or witnessed situations where these skills would be useful. Results We report our experience in developing conflict resolution/negotiation training in our graduate curriculum, provide an overview of the approach to delivery and practice of skills, and provide an analysis of the reception and effectiveness of the training. The results suggest this training meets a need and is effective. Importantly, these materials provide a template for others wishing to implement similar training in their curricula. Conclusions Conflict resolution and negotiation training meets a need in graduate education. A mixed approach using didactic and interactive components spaced out over time appears to be an effective method of training.more » « less
-
Deniz, Elif Ulutaş (Ed.)Effective science communication and stakeholder engagement are crucial skills for climate scientists, yet formal training in these areas remains limited in graduate education. The National Science Foundation Research Traineeship (NRT) at Auburn University (AU) addresses this gap through an innovative program combining science communication training with co-production approaches to enhance climate resiliency of built, natural, and social systems within the Southeastern United States (US). This paper evaluates the effectiveness of two novel graduate-level courses: one focused on science communication for non-technical audiences and another combining co-production methods with practical internship experience. Our research employed a mixed-methods approach, including a comprehensive analysis of course catalogs from 146 research-intensive universities and qualitative assessment of student experiences through surveys and descriptive exemplars. Analysis revealed that AU’s NRT program is unique among peer institutions in offering both specialized science communication training and co-production internship opportunities to graduate students across departments. Survey data from 11 program participants and detailed case studies of three program graduates demonstrated significant professional development benefits. Key outcomes included enhanced stakeholder engagement capabilities, improved science communication skills, and better preparation for both academic and non-academic careers. These findings suggest that integrating structured science communication training with hands-on co-production experience provides valuable preparation for climate scientists. The success of AU’s program model indicates that similar curriculum structures could benefit graduate programs nationwide, particularly in preparing students to effectively communicate complex scientific concepts to diverse audiences and engage with stakeholders in climate resilience efforts.more » « less
-
Abstract Should your department offer a course on how to be a scientist and a successful graduate student? We offer this course at George Mason University as a mandatory part of the graduate curriculum, but this is not common practice for graduate biomedical engineering programs. Graduate education in biomedical engineering is evolving rapidly, with an increasing demand for fundamental research skills, interdisciplinary skills, and professional development. We believe that graduate students will be more successful in their research activities if they are explicitly taught these skills at the beginning of their graduate coursework. This paper describes the design of this course in our bioengineering department.more » « less
-
null (Ed.)The publication of the first human genome in 2001 transformed biomedical research. Since then, an explosion of new sequencing technologies has required engineers and computer scientists to invent computational methods to analyze and interpret the ever-growing data. Now, large-scale biological data encompasses many types of ‘omics’ datasets, including genomes, transcriptomes, proteomes and metabolomes, and each of these new datasets has created a new set of analytical challenges. To meet this need, the field of bioinformatics has expanded significantly, but there is still a large need for engineers and scientists to work in this inherently interdisciplinary field. Properly trained bioinformaticians have expertise in computer science/engineering and understand the biological and medical context underlying their work. Therefore, the development of robust bioinformatics training programs is critical to educate the next generation of bioinformaticians. Although undergraduate degree programs in bioinformatics exist, providing students with hands-on bioinformatics skills through immersive research experiences is necessary to prepare students for graduate work. Thus, this work describes a recently funded NSF – International Research Experience for Students (IRES) site: US-Sweden Clinical Bioinformatics Research Training Program targeted at training students from diverse educational backgrounds to prepare them for authentic bioinformatics research experiences. Given the inherent interdisciplinary nature of bioinformatics, it is extremely difficult to design a training program that prepares students from different backgrounds (computer science, bioengineering, computational biology, biology) to be successful in a bioinformatics research group. Therefore, this ‘Work-in-Progress’ describes the pre-departure training program developed for this IRES site and the initial lessons learned.more » « less
An official website of the United States government
