This paper presents an alternate method for encrypting video streams using attribute-based encryption, focusing on securing the data rather than the connection between streaming endpoints. This shift allows video segments to be encrypted once at the source and cached anywhere, removing the need for per-client encryption and decryption at intermediate caches. Access can be restricted or revoked by disabling users’ private keys instead of re-encrypting the entire video stream. The approach also removes the need for decryption and re-encryption at caches, since encrypted content can be stored directly. The work introduces ABEVS, a framework that applies attribute-based encryption to DRM-enabled video streaming. ABE is integrated into a DASH-based streaming client, and video content is encrypted and distributed through intermediate caches. The system is evaluated on CloudLab. Results show that the approach reduces computational load on caches and has minimal impact on cache hit rate and video quality compared to HTTPS-based streaming.
more »
« less
This content will become publicly available on October 23, 2026
Lightweight DRM for Volumetric Point Clouds through Attribute-Based Selective Coordinate Encryption
This work aims to enable efficient digital rights management for volumetric video by introducing attribute-based selective coordinate encryption for point clouds. The method encrypts only a subset of coordinates to reduce computation and latency while maintaining security. Selective encryption makes point cloud frames distorted enough to block meaningful unauthorized viewing while still allowing basic visibility. The framework allows variation in the amount and type of encrypted coordinates (X, Y, Z, or combinations). Visual degradation is measured using standard point cloud quality metrics. Results show that encrypting only X coordinates reduces encryption time by 37% and decryption time by 46% compared to full encryption. Encrypting X and Y reduces these times by 20% and 36% while still degrading visual quality. Attribute-Based Encryption allows protected content to be cached and distributed without re-encryption, which reduces computation and latency. The current evaluation covers individual frames. Future work will cover full volumetric video streams and analyze caching gains during streaming with Attribute-Based Encryption.
more »
« less
- PAR ID:
- 10647696
- Publisher / Repository:
- ACM
- Date Published:
- Page Range / eLocation ID:
- 456 to 461
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
While recent work explored streaming volumetric content on-demand, there is little effort on live volumetric video streaming that bears the potential of bringing more exciting applications than its on-demand counterpart. To fill this critical gap, in this paper, we propose MetaStream, which is, to the best of our knowledge, the first practical live volumetric content capture, creation, delivery, and rendering system for immersive applications such as virtual, augmented, and mixed reality. To address the key challenge of the stringent latency requirement for processing and streaming a huge amount of 3D data, MetaStream integrates several innovations into a holistic system, including dynamic camera calibration, edge-assisted object segmentation, cross-camera redundant point removal, and foveated volumetric content rendering. We implement a prototype of MetaStream using commodity devices and extensively evaluate its performance. Our results demonstrate that MetaStream achieves low-latency live volumetric video streaming at close to 30 frames per second on WiFi networks. Compared to state-of-the-art systems, MetaStream reduces end-to-end latency by up to 31.7% while improving visual quality by up to 12.5%.more » « less
-
Real-time interactive video streaming applications like cloud-based video games, AR, and VR require high quality video streams and extremely low end-to-end interaction delays. These requirements cause the QoE to be extremely sensitive to packet losses. Due to the inter-dependency between compressed frames, packet losses stall the video decode pipeline until the lost packets are retransmitted (resulting in stutters and higher delays), or the decoder state is reset using IDR-frames (lower video quality for given bandwidth). Prism is a hybrid predictive-reactive packet loss recovery scheme that uses a split-stream video coding technique to meet the needs of ultra-low latency video streaming applications. Prism's approach enables aggressive loss prediction, rapid loss recovery, and high video quality post-recovery, with zero overhead during normal operation - avoiding the pitfalls of existing approaches. Our evaluation on real video game footage shows that Prism reduces the penalty of using I-frames for recovery by 81%, while achieving 30% lower delay than pure retransmission-based recovery.more » « less
-
Super-resolution (SR) is a well-studied technique for reconstructing high-resolution (HR) images from low-resolution (LR) ones. SR holds great promise for video streaming since an LR video segment can be transmitted from the video server to the client that then reconstructs the HR version using SR, resulting in a significant reduction in network bandwidth. However, SR is seldom used in practice for real-time video streaming, because the computational overhead of frame reconstruction results in large latency and low frame rate. To reduce the computational overhead and make SR practical, we propose a deep-learning-based SR method called Fo veated Cas caded Video Super Resolution (focas). focas relies on the fact that human eyes only have high acuity in a tiny central foveal region of the retina. focas uses more neural network blocks in the foveal region to provide higher video quality, while using fewer blocks in the periphery as lower quality is sufficient. To optimize the computational resources and reduce reconstruction latency, focas formulates and solves a convex optimization problem to decide the number of neural network blocks to use in each region of the frame. Using extensive experiments, we show that focas reduces the latency by 50%-70% while maintaining comparable visual quality as traditional (non-foveated) SR. Further, focas provides a 12-16x reduction in the client-to-server network bandwidth in comparison with sending the full HR video segments.more » « less
-
Microservices are a dominant cloud computing architecture because they enable applications to be built as collections of loosely coupled services. To provide greater observability and control into the resultant distributed system, microservices often use an overlay proxy network called a service mesh. A key advantage of service meshes is their ability to implement zero trust networking by encrypting microservice traffic with mutually authenticated TLS. However, the service mesh control plane—particularly its local certificate authority—becomes a critical point of trust. If compromised, an attacker can issue unauthorized certificates and redirect traffic to impersonating services. In this paper, we introduce our initial work in Mazu, a system designed to eliminate trust in the service mesh control plane by replacing its certificate authority with an unprivileged principal. Mazu leverages recent advances in registration-based encryption and integrates seamlessly with Istio, a widely used service mesh. Our preliminary evaluation, using Fortio macro-benchmarks and Prometheus-assisted micro-benchmarks, shows that Mazu significantly reduces the service mesh’s attack surface while adding just 0.17 ms to request latency compared to mTLS-enabled Istio.more » « less
An official website of the United States government
