The prevalence of voice spoofing attacks in today’s digital world has become a critical security concern. Attackers employ various techniques, such as voice conversion (VC) and text-to-speech (TTS), to generate synthetic speech that imitates the victim’s voice and gain access to sensitive information. The recent advances in synthetic speech generation pose a significant threat to modern security systems, while traditional voice authentication methods are incapable of detecting them effectively. To address this issue, a novel solution for logical access (LA)-based synthetic speech detection is proposed in this paper. SpoTNet is an attention-based spoofing transformer network that includes crafted front-end spoofing features and deep attentive features retrieved using the developed logical spoofing transformer encoder (LSTE). The derived attentive features were then processed by the proposed multi-layer spoofing classifier to classify speech samples as bona fide or synthetic. In synthetic speeches produced by the TTS algorithm, the spectral characteristics of the synthetic speech are altered to match the target speaker’s formant frequencies, while in VC attacks, the temporal alignment of the speech segments is manipulated to preserve the target speaker’s prosodic features. By highlighting these observations, this paper targets the prosodic and phonetic-based crafted features, i.e., the Mel-spectrogram, spectral contrast, and spectral envelope, presenting an effective preprocessing pipeline proven to be effective in synthetic speech detection. The proposed solution achieved state-of-the-art performance against eight recent feature fusion methods with lower EER of 0.95% on the ASVspoof-LA dataset, demonstrating its potential to advance the field of speaker identification and improve speaker recognition systems.
more »
« less
This content will become publicly available on June 23, 2026
LiveGuard: Voice Liveness Detection via Wavelet Scattering Transform and Mel Spectrogram Scaling
Voice-controlled interfaces are essential in modern smart devices, but they remain vulnerable to replay attacks that compromise voice authentication systems. Existing voice liveness detection methods often struggle to distinguish human speech from replayed audio. This paper introduces a novel approach, LiveGuard, utilizing wavelet scattering transform (WST) and Mel spectrogram scaling with a lightweight ResNet architecture to enhance voice liveness detection. WST captures robust hierarchical features, while Mel spectrogram scaling extracts fine-grained acoustic details, which the lightweight ResNet efficiently processes to identify live voice. Experimental results demonstrate accuracy improvements of 6% with WST and Mel spectrogram scaling, achieving a top accuracy of 97.17% on POCO dataset. Meanwhile, LiveGuard demonstrates superior performance on ASVspoof2019 and ASVspoof2021 benchmarks. It achieves the lowest equal error rate (EER) of 0.13%, and a min t-DCF of 0.00126 on ASVspoof2019, and an EER of 0.42% on ASVspoof2021, surpassing state-of-the-art methods.
more »
« less
- PAR ID:
- 10647749
- Publisher / Repository:
- IEEE
- Date Published:
- Page Range / eLocation ID:
- 317 to 330
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A Continuous Articulatory Gesture Based Liveness Detection for Voice Authentication on Smart DevicesVoice biometrics is drawing increasing attention to user authentication on smart devices. However, voice biometrics is vulnerable to replay attacks, where adversaries try to spoof voice authentication systems using pre-recorded voice samples collected from genuine users. To this end, we propose VoiceGesture, a liveness detection solution for voice authentication on smart devices such as smartphones and smart speakers. With audio hardware advances on smart devices, VoiceGesture leverages built-in speaker and microphone pairs on smart devices as Doppler Radar to sense articulatory gestures for liveness detection during voice authentication. The experiments with 21 participants and different smart devices show that VoiceGesture achieves over 99% and around 98% detection accuracy for text-dependent and text-independent liveness detection, respectively. Moreover, VoiceGesture is robust to different device placements, low audio sampling frequency, and supports medium range liveness detection on smart speakers in various use scenarios, including smart homes and smart vehicles.more » « less
-
Abstract This study introduces a non-invasive approach to monitor operation and productivity of a legacy pipe bending machine in real-time based on a lightweight convolutional neural network (CNN) model and internal sound as input data. Various sensors were deployed to determine the optimal sensor type and placement, and labels for training and testing the CNN model were generated through the meticulous collection of sound data in conjunction with webcam videos. The CNN model, which was optimized through hyperparameter tuning via grid search and utilized feature extraction using Log-Mel spectrogram, demonstrated notable prediction accuracies in the test. However, when applied in a real-world manufacturing scenario, the model encountered a significant number of errors in predicting productivity. To navigate through this challenge and enhance the predictive accuracy of the system, a buffer algorithm using the inferences of CNN models was proposed. This algorithm employs a queuing method for continuous sound monitoring securing robust predictions, refines the interpretation of the CNN model inferences, and enhances prediction outcomes in actual implementation where accuracy of monitoring productivity information is crucial. The proposed lightweight CNN model alongside the buffer algorithm was successfully deployed on an edge computer, enabling real-time remote monitoring.more » « less
-
Automatic assessment of depression from speech signals is affected by variabilities in acoustic content and speakers. In this study, we focused on addressing these variabilities. We used a database comprised of recordings of interviews from a large number of female speakers: 735 individuals suffering from depressive (dysthymia and major depression) and anxiety disorders (generalized anxiety disorder, panic disorder with or without agoraphobia) and 953 healthy individuals. Leveraging this unique and extensive database, we built an i-vector framework. In order to capture various aspects of speech signals, we used voice quality features in addition to conventional cepstral features. The features (F0, F1, F2, F3, H1-H2, H2-H4, H4-H2k, A1, A2, A3, and CPP) were inspired by a psychoacoustic model of voice quality [1]. An i-vector-based system using Mel Frequency Cepstral Coefficients (MFCCs) and another using voice quality features was developed. Voice quality features performed as well as MFCCs. A score-level fusion was then used to combine these two systems, resulting in a 6% relative improvement in accuracy in comparison with the i-vector system based on MFCCs alone. The system was robust even when the duration of the utterances was shortened to 10 seconds.more » « less
-
Deep convolution neural network has achieved great success in many artificial intelligence applications. However, its enormous model size and massive computation cost have become the main obstacle for deployment of such powerful algorithm in the low power and resource limited embedded systems. As the countermeasure to this problem, in this work, we propose statistical weight scaling and residual expansion methods to reduce the bit-width of the whole network weight parameters to ternary values (i.e. -1, 0, +1), with the objectives to greatly reduce model size, computation cost and accuracy degradation caused by the model compression. With about 16X model compression rate, our ternarized ResNet-32/44/56 could outperforms full-precision counterparts by 0.12%, 0.24% and 0.18% on CIFAR-10 dataset. We also test our ternarization method with AlexNet and ResNet-18 on ImageNet dataset, which both achieve the best top-1 accuracy compared to recent similar works, with the same 16X compression rate. If further incorporating our residual expansion method, compared to the full-precision counterpart, our ternarized ResNet-18 even improves the top-5 accuracy by 0.61% and merely degrades the top-1 accuracy only by 0.42% for ImageNet dataset, with 8X model compression rate. It outperforms the recent ABC-Net by 1.03% in top-1 accuracy and 1.78% in top-5 accuracy, with around 1.25X higher compression rate and more than 6X computation reduction due to the weight sparsity.more » « less
An official website of the United States government
