Abstract Mortality and shifts in species distributions are among the most obvious consequences of extreme climatic events. However, the sublethal effects of an extreme event can have persistent impacts throughout an individual’s lifetime and into future generations via within‐generation and transgenerational phenotypic plasticity. These changes can either confer resilience or increase susceptibility to subsequent stressful events, with impacts on population, community, and potentially ecosystem processes. Here, we show how a simulated extreme warming event causes persistent changes in the morphology and growth of a foundation species (eelgrass,Zostera marina) across multiple clonal generations and multiple years. The effect of previous parental exposure to warming increased aboveground biomass, shoot length, and aboveground–belowground biomass ratios while also greatly decreasing leaf growth rates. Long‐term increases in aboveground–belowground biomass ratios could indicate an adaptive clonal transgenerational response to warmer climates that reduces the burden of increased respiration in belowground biomass. These transgenerational responses were likely decoupled from clonal parent provisioning as rhizome size of clonal offspring was standardized at planting and rhizome starch reserves were not impacted by warming treatments. Future investigations into potential epigenetic mechanisms underpinning such clonal transgenerational plasticity will be necessary to understand the resilience of asexual foundation species to repeated extreme climatic events.
more »
« less
This content will become publicly available on November 1, 2026
Ecosystem Effects of Predators Are Amplified Across Generations Through Prey Behavioural Plasticity
ABSTRACT Predator‐induced changes in prey traits can cascade through ecosystems to impact biogeochemical cycling and community structure. Whether these effects persist, amplify or diminish across prey generations remains uncertain. We tested for predator transgenerational effects using a 3‐year common garden experiment in a terrestrial old‐field ecosystem. Predator exposure was manipulated across two generations of four grasshopper herbivore prey populations, with measurements of ecosystem processes made alongside measurements of prey trait responses. We found predators had larger effects on plant community biomass, plant diversity and soil carbon accumulation in the second generation of predator exposure than in the first generation. Paired with trait data on the grasshoppers, we found this amplification of ecosystem effects corresponded with heightened antipredator behaviours in the second generation. Our results show that transgenerational behavioural plasticity can magnify predator‐driven ecosystem impacts across generations, linking eco‐evolutionary processes with ecosystem dynamics.
more »
« less
- Award ID(s):
- 2011884
- PAR ID:
- 10647903
- Publisher / Repository:
- John Wiley Publishing
- Date Published:
- Journal Name:
- Ecology Letters
- Volume:
- 28
- Issue:
- 11
- ISSN:
- 1461-023X
- Subject(s) / Keyword(s):
- biogeochemistry | eco-evolutionary feedbacks | functional traits | nutrient cycling | predator–prey interactions | trait-mediated effects | transgenerational plasticity | trophic cascades
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Much research has shown that environmental stress can induce adaptive and maladaptive phenotypic changes in organisms that persist for multiple generations. Such transgenerational phenotypic plasticity shrouds our understanding of the long‐term consequences of ongoing anthropogenic pressures.Here, we evaluated within‐ and transgenerational phenotypic responses to food stress in the freshwater crustacean,Daphnia. We reared 45 clones ofDaphnia pulicariaeach on high‐qualityScenedesmusand low‐quality (but also non‐toxic) cyanobacteria (generation 1). Offspring produced by generation 1 adults were then reared onScenedesmus(generation 2), and life‐history traits were measured across both generations.The results show thatDaphniain generation 1 exhibited reduced fitness (i.e., delayed maturation, lower reproductive output, increased clutch interval) when reared in the presence of cyanobacteria as opposed to high‐quality food. However, maternal stress had no clear influence on the fitness of offspring. That is,Daphniain the second experimental generation had similar mean trait values, irrespective of whether their mothers were reared on cyanobacteria or high‐quality food.Signals of transgenerational life‐history effects were obscured, in part, by extensive clonal variation amongDaphniain the direction of transgenerational responses to cyanobacteria (i.e., adaptive and maladaptive plasticity). Further analyses demonstrated that such individual variance in plasticity might be open to selection and potentially offer a means of contemporary adaptation to cyanobacteria. Taken together, our results denote a link between the overall strength of transgenerational responses to the environment and the potential for rapid evolution in populations. A freePlain Language Summarycan be found within the Supporting Information of this article.more » « less
-
Abstract Landscapes of fear can determine the dynamics of entire ecosystems. In response to perceived predation risk, prey can show physiological, behavioral, or morphological trait changes to avoid predation. This in turn can indirectly affect other species by modifying species interactions (e.g., altered feeding), with knock‐on effects, such as trophic cascades, on the wider ecosystem. While such indirect effects stemming from the fear of predation have received extensive attention for herbivore–plant and predator–prey interactions, much less is known about how they alter parasite–host interactions and wildlife diseases. In this synthesis, we present a conceptual framework for how predation risk—as perceived by organisms that serve as hosts—can affect parasite–host interactions, with implications for infectious disease dynamics. By basing our approach on recent conceptual advances with respect to predation risk effects, we aim to expand this general framework to include parasite–host interactions and diseases. We further identify pathways through which parasite–host interactions can be affected, for example, through altered parasite avoidance behavior or tolerance of hosts to infections, and discuss the wider relevance of predation risk for parasite and host populations, including heuristic projections to population‐level dynamics. Finally, we highlight the current unknowns, specifically the quantitative links from individual‐level processes to population dynamics and community structure, and emphasize approaches to address these knowledge gaps.more » « less
-
Summary Plant responses to abiotic environmental challenges are known to have lasting effects on the plant beyond the initial stress exposure. Some of these lasting effects are transgenerational, affecting the next generation. The plant response to elevated carbon dioxide (CO2) levels has been well studied. However, these investigations are typically limited to plants grown for a single generation in a high CO2environment while transgenerational studies are rare.We aimed to determine transgenerational growth responses in plants after exposure to high CO2by investigating the direct progeny when returned to baseline CO2levels.We found that both the flowering plantArabidopsis thalianaand seedless nonvascular plantPhyscomitrium patenscontinue to display accelerated growth rates in the progeny of plants exposed to high CO2. We used the model species Arabidopsis to dissect the molecular mechanism and found that DNA methylation pathways are necessary for heritability of this growth response.More specifically, the pathway of RNA‐directed DNA methylation is required to initiate methylation and the proteins CMT2 and CMT3 are needed for the transgenerational propagation of this DNA methylation to the progeny plants. Together, these two DNA methylation pathways establish and then maintain a cellular memory to high CO2exposure.more » « less
-
Abstract Alternative ecological theories make divergent predictions about the relationship between predators and their prey. If predators exert top‐down ecosystem control, increases in predation should diminish prey abundance and could either diminish or enhance community diversity of prey species. However, if bottom‐up ecosystem controls predominate, predator populations should track underlying variation in prey diversity and abundance, which ultimately should reflect available energy. Past research, both across islands and comparing islands with the mainland, has frequently invoked the importance of predation in regulating lizard abundance and diversity, suggesting an important role of top‐down control when predators are present. However, others have posited a stronger role of food limitation, via competition or bottom‐up forces. If top‐down control predominates, then negative correlations between prey abundance and predator occurrence should emerge within and among islands. Using data from eBird, we inferred landscape‐level presence data for bird species on the islands of Jamaica and Hispaniola. By summing occurrence probabilities of all known anole‐predator birds, we estimated total avian predation pressure and combined these estimates with anole community data from a mark‐recapture study that spanned spatial and climatic gradients on both islands. Avian predators and anole lizards were both affected by climate, with total predator occurrence, anole abundance and anole species richness increasing with mean annual temperature. Anole abundance and predator occurrence showed a curvilinear relationship, where abundance and predator occurrence increased together until predator occurrence became sufficiently high that anole abundance was negatively impacted. This indicates that bottom‐up ecosystem controls drive richness of both anoles and their predators, mitigating the negative effects predators might have on their prey, at least until predator occurrence reaches a threshold. We did not detect consistent evidence of predator occurrence reducing anole community richness. These findings support past research showing that islands with more predators tend to have lower prey abundances, but it does not seem that these top‐down forces are strongly limiting species coexistence. Instead, bottom‐up forces linked with climate may be more important drivers of diversity in both lizards and their avian predators on these islands.more » « less
An official website of the United States government
