skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multi-Response Linear Discriminant Analysis in High Dimensions
The problem of classifying multiple categorical responses is fundamental in modern machine learning and statistics, with diverse applications in fields such as bioinformatics and imaging. This manuscript investigates linear discriminant analysis (LDA) with high-dimensional predictors and multiple multi-class responses. Specifically, we first examine two different classification scenarios under the bivariate LDA model: joint classification of the two responses and conditional classification of one response while observing the other. To achieve optimal classification rules for both scenarios, we introduce two novel tensor formulations of the discriminant coefficients and corresponding regularization strategies. For joint classification, we propose an overlapping group lasso penalty and a blockwise coordinate descent algorithm to efficiently compute the joint discriminant coefficient tensors. For conditional classification, we utilize an alternating direction method of multipliers (ADMM) algorithm to compute the discriminant coefficient tensors under new constraints. We then extend our method and algorithms to general multivariate responses. Finally, we validate the effectiveness of our approach through simulation studies and applications to benchmark datasets.  more » « less
Award ID(s):
2113589 2415067
PAR ID:
10648109
Author(s) / Creator(s):
; ;
Publisher / Repository:
Journal of Machine Learning Research
Date Published:
Journal Name:
Journal of Machine Learning Research
ISSN:
1533-7928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Linear discriminant analysis (LDA) is widely used for dimensionality reduction under supervised learning settings. Traditional LDA objective aims to minimize the ratio of squared Euclidean distances that may not perform optimally on noisy data sets. Multiple robust LDA objectives have been proposed to address this problem, but their implementations have two major limitations. One is that their mean calculations use the squared l2-norm distance to center the data, which is not valid when the objective does not use the Euclidean distance. The second problem is that there is no generalized optimization algorithm to solve different robust LDA objectives. In addition, most existing algorithms can only guarantee the solution to be locally optimal, rather than globally optimal. In this paper, we review multiple robust loss functions and propose a new and generalized robust objective for LDA. Besides, to better remove the mean value within data, our objective uses an optimal way to center the data through learning. As one important algorithmic contribution, we derive an efficient iterative algorithm to optimize the resulting non-smooth and non-convex objective function. We theoretically prove that our solution algorithm guarantees that both the objective and the solution sequences converge to globally optimal solutions at a sub-linear convergence rate. The experimental results demonstrate the effectiveness of our new method, achieving significant improvements compared to the other competing methods. 
    more » « less
  2. While linear discriminant analysis (LDA) is a widely used classification method, it is highly affected by outliers which commonly occur in various real datasets. Therefore, several robust LDA methods have been proposed. However, they either rely on robust estimation of the sample means and covariance matrix which may have noninvertible Hessians or can only handle binary classes or low dimensional cases. The proposed robust discriminant analysis is a multi-directional projection-pursuit approach which can classify multiple classes without estimating the covariance or Hessian matrix and work for high dimensional cases. The weight function effectively gives smaller weights to the points more deviant from the class center. The discriminant vectors and scoring vectors are solved by the proposed iterative algorithm. It inherits good properties of the weight function and multi-directional projection pursuit for reducing the influence of outliers on estimating the discriminant directions and producing robust classification which is less sensitive to outliers. We show that when a weight function is appropriately chosen, then the influence function is bounded and discriminant vectors and scoring vectors are both consistent as the percentage of outliers goes to zero. The experimental results show that the robust optimal scoring discriminant analysis is effective and efficient. 
    more » « less
  3. Multilinear discriminant analysis (MLDA), a novel approach based upon recent developments in tensor-tensor decomposition, has been proposed recently and showed better performance than traditional matrix linear discriminant analysis (LDA). The current paper presents a nonlinear generalization of MLDA (referred to as KMLDA) by extending the well known ``kernel trick" to multilinear data. The approach proceeds by defining a new dot product based on new tensor operators for third-order tensors. Experimental results on the ORL, extended Yale B, and COIL-100 data sets demonstrate that performing MLDA in feature space provides more class separability. It is also shown that the proposed KMLDA approach performs better than the Tucker-based discriminant analysis methods in terms of image classification. 
    more » « less
  4. In this manuscript, we present a multiscale Adaptive Reduced-Order Modeling (AROM) framework to efficiently simulate the response of heterogeneous composite microstructures under interfacial and volumetric damage. This framework builds on the eigendeformation-based reduced-order homogenization model (EHM), which is based on the transformation field analysis (TFA) and operates in the context of computational homogenization with a focus on model order reduction of the microscale problem. EHM pre-computes certain microstructure information by solving a series of linear elastic problems defined over the fully resolved microstructure (i.e., concentration tensors, interaction tensors) and approximates the microscale problem using a much smaller basis spanned over subdomains (also called parts) of the microstructure. Using this reduced basis, and prescribed spatial variation of inelastic response fields over the parts, the microscale problem leads to a set of algebraic equations with part-wise responses as unknowns, instead of node-wise displacements as in finite element analysis. The volumetric and interfacial influence functions are calculated by using the Interface enriched Generalized Finite Element Method (IGFEM) to compute the coefficient tensors, in which the finite element discretization does not need to conform to the material interfaces. AROM takes advantage of pre-computed coefficient tensors associated with the finest ROM and efficiently computes the coefficient tensors of a series of gradually coarsening ROMs. During the multiscale analysis stage, the simulation starts with a coarse ROM which can capture the initial elastic response well. As the loading continues and response in certain parts of the microstructure starts to localize, the analysis adaptively switches to the next level of refined ROM to better capture those local responses. The performance of AROM is evaluated by comparing the results with regular EHM (no adaptive refinement) and IGFEM under different loading conditions and failure modes for various 2D and 3D microstructures. The proposed AROM provides an efficient way to model history-dependent nonlinear responses for composite materials under localized interface failure and phase damage. 
    more » « less
  5. Over the past decades, there has been an increase of attention to adapting machine learning methods to fully exploit the higher order structure of tensorial data. One problem of great interest is tensor classification, and in particular the extension of linear discriminant analysis to the multilinear setting. We propose a novel method for multilinear discriminant analysis that is radically different from the ones considered so far, and it is the first extension to tensors of quadratic discriminant analysis. Our proposed approach uses invariant theory to extend the nearest Mahalanobis distance classifier to the higher-order setting, and to formulate a well-behaved optimization problem. We extensively test our method on a variety of synthetic data, outperforming previously proposed MDA techniques. We also show how to leverage multi-lead ECG data by constructing tensors via taut string, and use our method to classify healthy signals versus unhealthy ones; our method outperforms state-of-the-art MDA methods, especially after adding significant levels of noise to the signals. Our approach reached an AUC of 0.95(0.03) on clean signals—where the second best method reached 0.91(0.03)—and an AUC of 0.89(0.03) after adding noise to the signals (with a signal-to-noise-ratio of −30)—where the second best method reached 0.85(0.05). Our approach is fundamentally different than previous work in this direction, and proves to be faster, more stable, and more accurate on the tests we performed. 
    more » « less