skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 14, 2026

Title: Improving the Performance of Out-of-Core LLM Inference Using Heterogeneous Host Memory
The memory footprint of modern applications like large language models (LLMs) far exceeds the memory capacity of accelerators they run on and often spills over to host memory. As model sizes continue to grow, DRAM-based memory is no longer sufficient to contain these models, resulting in further spill-over to storage and necessitating the use of technologies like Intel Optane and CXL-enabled memory expansion. While such technologies provide more capacity, their higher latency and lower bandwidth has given rise to heterogeneous memory configurations that attempt to strike a balance between capacity and performance. This paper evaluates the impact of such memory configurations on a GPU running out-of-core LLMs. Starting with basic host/device bandwidth measurements using an Optane and Nvidia A100 equipped NUMA system, we present a comprehensive performance analysis of serving OPT-30B and OPT-175B models using FlexGen, a state-of-the-art serving framework. Our characterization shows that FlexGen's weight placement algorithm is a key bottleneck limiting performance. Based on this observation, we evaluate two alternate weight placement strategies, one each optimizing for inference latency and throughput. When combined with model quantization, our strategies improve latency and throughput by 27% and 5x, respectively. These figures are within 9% and 6% of an all-DRAM system, demonstrating how careful data placement can effectively enable the substitution of DRAM with high-capacity but slower memory, improving overall system energy efficiency.  more » « less
Award ID(s):
1900803
PAR ID:
10648251
Author(s) / Creator(s):
;
Publisher / Repository:
2025 IEEE International Symposium on Workload Characterization
Date Published:
Subject(s) / Keyword(s):
Compute express link heterogeneous memory GPU inference large language models non-volatile memory
Format(s):
Medium: X
Location:
Irvine, California
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Storing data structures in high-capacity byte-addressable persistent memory instead of DRAM or a storage device offers the opportunity to (1) reduce cost and power consumption compared with DRAM, (2) decrease the latency and CPU resources needed for an I/O operation compared with storage, and (3) allow for fast recovery as the data structure remains in memory after a machine failure. The first commercial offering in this space is Intel® Optane™ Direct Connect (Optane™ DC) Persistent Memory. Optane™ DC promises access time within a constant factor of DRAM, with larger capacity, lower energy consumption, and persistence. We present an experimental evaluation of persistent transactional memory performance, and explore how Optane™ DC durability domains affect the overall results. Given that neither of the two available durability domains can deliver performance competitive with DRAM, we introduce and emulate a new durability domain, called PDRAM, in which the memory controller tracks enough information (and has enough reserve power) to make DRAM behave like a persistent cache of Optane™ DC memory.In this paper we compare the performance of these durability domains on several configurations of five persistent transactional memory applications. We find a large throughput difference, which emphasizes the importance of choosing the best durability domain for each application and system. At the same time, our results confirm that recently published persistent transactional memory algorithms are able to scale, and that recent optimizations for these algorithms lead to strong performance, with speedups as high as 6× at 16 threads. 
    more » « less
  2. null (Ed.)
    Non-volatile memory (NVRAM) based on phase-change memory (such as Optane DC Persistent Memory Module) is making its way into Intel servers to address the needs of emerging applications that have a huge memory footprint. These systems have both DRAM and NVRAM on the same memory channel with the smaller capacity DRAM serving as a cache to the larger capacity NVRAM in the so called 2LM mode. In this work we analyze the performance of such DRAM caches on real hardware using a broad range of synthetic and real-world benchmarks. We identify three key limitations of DRAM caches in these emerging systems which prevent large-scale, bandwidth bound applications from taking full advantage of NVRAM read and write bandwidth. We show that software based techniques are necessary for orchestrating the data movement between DRAM and PMM for such workloads to take full advantage of these new heterogeneous memory systems. 
    more » « less
  3. null (Ed.)
    The emergence of Intel's Optane DC persistent memory (Optane Pmem) draws much interest in building persistent key-value (KV) stores to take advantage of its high throughput and low latency. A major challenge in the efforts stems from the fact that Optane Pmem is essentially a hybrid storage device with two distinct properties. On one hand, it is a high-speed byte-addressable device similar to DRAM. On the other hand, the write to the Optane media is conducted at the unit of 256 bytes, much like a block storage device. Existing KV store designs for persistent memory do not take into account of the latter property, leading to high write amplification and constraining both write and read throughput. In the meantime, a direct re-use of a KV store design intended for block devices, such as LSM-based ones, would cause much higher read latency due to the former property. In this paper, we propose ChameleonDB, a KV store design specifically for this important hybrid memory/storage device by considering and exploiting these two properties in one design. It uses LSM tree structure to efficiently admit writes with low write amplification. It uses an in-DRAM hash table to bypass LSM-tree's multiple levels for fast reads. In the meantime, ChameleonDB may choose to opportunistically maintain the LSM multi-level structure in the background to achieve short recovery time after a system crash. ChameleonDB's hybrid structure is designed to be able to absorb sudden bursts of a write workload, which helps avoid long-tail read latency. Our experiment results show that ChameleonDB improves write throughput by 3.3× and reduces read latency by around 60% compared with a legacy LSM-tree based KV store design. ChameleonDB provides performance competitive even with KV stores using fully in-DRAM index by using much less DRAM space. Compared with CCEH, a persistent hash table design, ChameleonDB provides 6.4× higher write throughput. 
    more » « less
  4. null (Ed.)
    Emerging hybrid memory systems that comprise technologies such as Intel's Optane DC Persistent Memory, exhibit disparities in the access speeds and capacity ratios of their heterogeneous memory components. This breaks many assumptions and heuristics designed for traditional DRAM-only platforms. High application performance is feasible via dynamic data movement across memory units, which maximizes the capacity use of DRAM while ensuring efficient use of the aggregate system resources. Newly proposed solutions use performance models and machine intelligence to optimize which and how much data to move dynamically. However, the decision of when to move this data is based on empirical selection of time intervals, or left to the applications. Our experimental evaluation shows that failure to properly conFigure the data movement frequency can lead to 10%-100% performance degradation for a given data movement policy; yet, there is no established methodology on how to properly conFigure this value for a given workload, platform and policy. We propose Cori, a system-level tuning solution that identifies and extracts the necessary application-level data reuse information, and guides the selection of data movement frequency to deliver gains in application performance and system resource efficiency. Experimental evaluation shows that Cori configures data movement frequencies that provide application performance within 3% of the optimal one, and that it can achieve this up to 5 x more quickly than random or brute-force approaches. System-level validation of Cori on a platform with DRAM and Intel's Optane DC PMEM confirms its practicality and tuning efficiency. 
    more » « less
  5. Die-stacked DRAM (a.k.a., on-chip DRAM) provides much higher bandwidth and lower latency than off-chip DRAM. It is a promising technology to break the “memory wall”. Die-stacked DRAM can be used either as a cache (i.e., DRAM cache) or as a part of memory (PoM). A DRAM cache design would suffer from more page faults than a PoM design as the DRAM cache cannot contribute towards capacity of main memory. At the same time, obtaining high performance requires PoM systems to swap requested data to the die-stacked DRAM. Existing PoM designs fall into two categories - line-based and page-based. The former ensures low off-chip bandwidth utilization but suffers from a low hit ratio of on-chip memory due to limited temporal locality. In contrast, page-based designs achieve a high hit ratio of on-chip memory albeit at the cost of moving large amounts of data between on-chip and off-chip memories, leading to increased off-chip bandwidth utilization and significant system performance degradation. To achieve a similar high hit ratio of on-chip memory as pagebased designs, and eliminate excessive off-chip traffic involved, we propose SELF, a high performance and bandwidth efficient approach. The key idea is to SElectively swap Lines in a requested page that are likely to be accessed according to page Footprint, instead of blindly swapping an entire page. In doing so, SELF allows incoming requests to be serviced from the on-chip memory as much as possible, while avoiding swapping unused lines to reduce memory bandwidth consumption. We evaluate a memory system which consists of 4GB on-chip DRAM and 12GB offchip DRAM. Compared to a baseline system that has the same total capacity of 16GB off-chip DRAM, SELF improves the performance in terms of instructions per cycle by 26.9%, and reduces the energy consumption per memory access by 47.9% on average. In contrast, state-of-the-art line-based and page-based PoM designs can only improve the performance by 9.5% and 9.9%, respectively, against the same baseline system. 
    more » « less