skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 28, 2026

Title: Alternating Selective Copolymerization of Lactide and ε-Caprolactone with Dizinc Complexes of Modular, Binucleating Bis(pyrazolyl)alkanes
Poly(lactic acid) is the most successful biodegradable synthetic polymer. Yet, its physical properties need to be improved to replace petrochemical polymers or to serve emerging applications. Sequence-selective copolymerization of lactide with lactones can provide more versatile polyesters, but ideal alternating selectivity remains elusive. We report binucleated dizinc catalysts that show exceptional alternating selectivity in this reaction. Metalation of binucleating bis(pyrazolyl)alkanes (PDRH) gives neutral complexes PDRZn2X3 (X− = Cl−, Br−, I−) with two distinct zinc sites. Anion metathesis gives μ-phenolate cationic complexes [PDRZn2X2]+. The neutral iodide complexes PDRZn2I3 polymerize lactide with moderate dispersity (Đ = 1.18−1.38). Monozinc analogs give much lower activity, implicating a cooperative polymerization. End-group analysis and active site interrogation are consistent with coordination insertion polymerization by a dialkoxide complex. Based on model dizinc alkoxides, in situ NMR analysis, and DFT modeling, we provide a plausible active site structure and mechanistic rationale for cooperativity. We obtained copolymers of lactide and ε-caprolactone showing the highest degree of alternation obtained with a main group catalyst. Mechanistic analysis implicates transesterification with unusual alternating selectivity. We also obtained copolymers with γ-butyrolactone, δ-valerolactone, and glycolide. This report also represents a rare use of bimetallic catalysts to obtain new selectivity in lactide polymerization.  more » « less
Award ID(s):
2337696
PAR ID:
10648346
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Inorganic Chemistry
Volume:
64
Issue:
29
ISSN:
0020-1669
Page Range / eLocation ID:
15116 to 15128
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Anionic polymerization with alkali metals represents one of the most commercially significant and synthetically versatile polymerization methods. However, structural analysis of active alkali metal polymerization catalysts is complicated by aggregation and multicenter reactivity. This work describes discrete dilithium complexes for the anionic polymerization of rac-lactide and o-phthalaldehyde. The reaction of binucleating bis(pyrazolyl)alkane ligands PDRH with two equivalents of LiHMDS (HMDS− = −N(SiMe3)2) gives complexes PDRLi2(HMDS) with a symmetric μ-amide structure, analogous to simple alkali amides. These complexes polymerize rac-lactide by a mechanism analogous to LiHMDS. Notably, PD4‐MeLi2(HMDS) gives lower dispersity and better molecular weight control than LiHMDS, consistent with a more well-defined catalyst. In the polymerization of o-phthalaldehyde, PDHLi2(HMDS) and PD4‐MeLi2(HMDS) give higher activity and higher selectivity than LiHMDS or butyllithium, commonly used initiators for this reaction, and also give modest stereoselectivity. Our detailed computational analysis of o-phthalaldehyde insertion resulted in a highly cooperative mechanism, with μ-alkoxide bridging of the two metals in the resting state and with back-coordination of the furanyl oxygen. Aldehyde insertion occurs through synchronous nucleophilic addition and migration of the chain end alkoxide, not by aldehyde coordination and insertion. This detailed picture of polymerization by a lithium catalyst will inform mechanistic analysis and catalyst design in anionic polymerization. 
    more » « less
  2. Rational design of synthetic catalysts that mimic enzymes in catalysis and substrate selectivity is a long-standing goal of chemists. We report bottom-up synthesis of artificial acetal hydrolase that hydrolyzes its substrate with high selectivity under otherwise impossible neutral and basic conditions. Our synthetic method allows facile modification of the active site, including introduction of a local water pool near the acetal group of the bound substrate to alter the catalytic mechanism, or installment of a secondary catalytic group to enhance the catalytic activity. 
    more » « less
  3. Abstract Electrochemically controlled redox-switchable polymerization uses an electric potential to bias the monomer selectivity of a catalyst. Many ferrocene-appended catalysts can exist in two oxidation states, a neutral reduced state and an oxidized cationic state. Electrochemical generation of the oxidized cationic state produces a charged species whose counteranion is determined by the identity of the supporting electrolyte anion. Herein, the role the counteranion has on monomer selectivity and polymerization kinetics is investigated. Minimal differences in monomer selectivity in the reduced state was found, however, in the oxidized state, the coordinating ability of the counteranion greatly influenced the rate of polymerization. How activity differences governed by the choice of electrolyte can be utilized to access desired diblock copolymers is also described. 
    more » « less
  4. Although N-heterocyclic carbenes (NHCs) have been known as ligands for organometallic complexes since the 1960s, these carbenes did not attract considerable attention until Arduengo et al. reported the isolation of a metal-free imidazol-2-ylidene in 1991. In 2001 Crabtree et al. reported a few complexes featuring an NHC isomer, namely an imidazol-5-ylidene, also termed abnormal NHC (aNHCs). In 2009, it was shown that providing to protect the C-2 position of an imidazolium salt, the deprotonation occurred at the C-5 position, affording imidazol-5-ylidenes that could be isolated. Over the last ten years, stable aNHCs have been used for designing a range of catalysts employing Pd( ii ), Cu( i ), Ni( ii ), Fe(0), Zn( ii ), Ag( i ), and Au( i / iii ) metal based precursors. These catalysts were utilized for different organic transformations such as the Suzuki–Miyaura cross-coupling reaction, C–H bond activation, dehydrogenative coupling, Huisgen 1,3-dipolar cycloaddition (click reaction), hydroheteroarylation, hydrosilylation reaction and migratory insertion of carbenes. Main-group metal complexes were also synthesized, including K( i ), Al( iii ), Zn( ii ), Sn( ii ), Ge( ii ), and Si( ii / iv ). Among them, K( i ), Al( iii ), and Zn( ii ) complexes were used for the polymerization of caprolactone and rac -lactide at room temperature. In addition, based on the superior nucleophilicity of aNHCs, relative to that of their nNHCs isomers, they were used for small molecules activation, such as carbon dioxide (CO 2 ), nitrous oxide (N 2 O), tetrahydrofuran (THF), tetrahydrothiophene and 9-borabicyclo[3.3.1]nonane (9BBN). aNHCs have also been shown to be efficient metal-free catalysts for ring opening polymerization of different cyclic esters at room temperature; they are among the most active metal-free catalysts for ε-caprolactone polymerization. Recently, aNHCs successfully accomplished the metal-free catalytic formylation of amides using CO 2 and the catalytic reduction of carbon dioxide, including atmospheric CO 2 , into methanol, under ambient conditions. Although other transition metal complexes featuring aNHCs as ligand have been prepared and used in catalysis, this review article summarize the results obtained with the isolated aNHCs. 
    more » « less
  5. null (Ed.)
    Photoredox ring-opening polymerization of O -carboxyanhydrides allows for the synthesis of polyesters with precisely controlled molecular weights, molecular weight distributions, and tacticities. While powerful, obviating the use of precious metal-based photocatalysts would be attractive from the perspective of simplifying the protocol and enabling unexpected reactivity. Herein, we report the Co and Zn catalysts that are activated by external light to mediate efficient ring-opening polymerization of O -carboxyanhydrides, without the use of exogenous precious metal-based photocatalysts. Our methods allow for the synthesis of isotactic polyesters with high molecular weights (>200 kDa) and narrow molecular weight distributions ( M w / M n < 1.1). Mechanistic studies indicate that light activates the oxidative status of Co III intermediate that is generated from the regioselective ring-opening of the O -carboxyanhydride. We also demonstrate that the use of Zn or Hf complexes together with Co can allow for stereoselective photoredox ring-opening polymerizations of multiple racemic O -carboxyanhydrides to synthesize syndiotactic and stereoblock copolymers, which vary widely in their glass transition temperatures. 
    more » « less