Abstract Slowly evolving stratified flow over rough topography is subject to substantial drag due to internal motions, but often numerical simulations are carried out at resolutions where this “wave” drag must be parameterized. Here we highlight the importance of internal drag from topography with scales that cannot radiate internal waves, but may be highly nonlinear, and we propose a simple parameterization of this drag that has a minimum of fit parameters compared to existing schemes. The parameterization smoothly transitions from a quadratic drag law () for lowNh/u0(linear wave dynamics) to a linear drag law () for highNh/u0flows (nonlinear blocking and hydraulic dynamics), whereNis the stratification,his the height of the topography, andu0is the near-bottom velocity; the parameterization does not have a dependence on Coriolis frequency. Simulations carried out in a channel with synthetic bathymetry and steady body forcing indicate that this parameterization accurately predicts drag across a broad range of forcing parameters when the effect of reduced near-bottom mixing is taken into account by reducing the effective height of the topography. The parameterization is also tested in simulations of wind-driven channel flows that generate mesoscale eddy fields, a setup where the downstream transport is sensitive to the bottom drag parameterization and its effect on the eddies. In these simulations, the parameterization replicates the effect of rough bathymetry on the eddies. If extrapolated globally, the subinertial topographic scales can account for 2.7 TW of work done on the low-frequency circulation, an important sink that is redistributed to mixing in the open ocean.
more »
« less
This content will become publicly available on May 1, 2026
Baroclinic Turbulence above Rough Topography: The Vortex Gas and Topographic Turbulence Regimes
Abstract Recent scaling theories for the eddy fluxes in the two-layer quasigeostrophic (QG) model assume a flat-bottom boundary. Here, we discuss an organizing principle for how rough topography (i.e., topography with length scales similar to or smaller than the eddy scale) modifies the fully developed state of baroclinic turbulence. In particular, we focus on random, homogeneous topography in the two-layer QG model on anfplane, forced by a zonal shear and dissipated by linear drag. We present a suite of numerical simulations using idealized monoscale topography, systematically modifying the topographic length and height scales and the strength of the drag. We outline the dependence of the eddy diffusivityD, barotropic eddy energyE, and eddy mixing length, on the two nondimensional control parameters:, controlling the strength of the drag, and, controlling the strength of topographic–advective interactions. Two distinct regimes are identified and quantitatively predicted by a regime transition parameterα, which depends on bothand. Onceαsurpasses ancritical value, all eddy scales are reduced below their flat-bottom values and become much less sensitive to the drag coefficient. Spectral energy budgets reveal that energy pathways are importantly reorganized in this regime compared to the flat-bottom limit. We show how this phenomenology extends to more realistic, multiscale topography and to three-layer QG simulations.
more »
« less
- Award ID(s):
- 1912357
- PAR ID:
- 10648391
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Physical Oceanography
- Volume:
- 55
- Issue:
- 5
- ISSN:
- 0022-3670
- Page Range / eLocation ID:
- 611 to 630
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The evolution of unforced and weakly damped two-dimensional turbulence over random rough topography presents two extreme states. If the initial kinetic energy is sufficiently high, then the topography is a weak perturbation, and evolution is determined by the spontaneous formation and mutual interaction of coherent axisymmetric vortices. High-energy vortices roam throughout the domain and mix the background potential vorticity (PV) to homogeneity, i.e., in the region between vortices, which is most of the domain, the relative vorticity largely cancels the topographic PV. If is low, then vortices still form but they soon become locked to topographic features: Anticyclones sit above topographic depressions and cyclones above elevated regions. In the low-energy case, with topographically locked vortices, the background PV retains some spatial variation. We develop a unified framework of topographic turbulence spanning these two extreme states of low and high energy. A main organizing concept is that PV homogenization demands a particular kinetic energy level . is the separator between high-energy evolution and low-energy evolution.more » « less
-
Abstract In the theory of protoplanetary disk turbulence, a widely adopted ansatz, or assumption, is that the turnover frequency of the largest turbulent eddy, ΩL, is the local Keplerian frequency ΩK. In terms of the standard dimensionless Shakura–Sunyaevαparameter that quantifies turbulent viscosity or diffusivity, this assumption leads to characteristic length and velocity scales given respectively by and , in whichHandcare the local gas scale height and sound speed. However, this assumption is not applicable in cases when turbulence is forced numerically or driven by some natural processes such as vertical shear instability. Here, we explore the more general case where ΩL≥ ΩKand show that, under these conditions, the characteristic length and velocity scales are respectively and , where is twice the Rossby number. It follows that , where is the root-mean-square average of the turbulent velocities. Properly allowing for this effect naturally explains the reduced particle scale heights produced in shearing box simulations of particles in forced turbulence, and it may help with interpreting recent edge-on disk observations; more general implications for observations are also presented. For , the effective particle Stokes numbers are increased, which has implications for particle collision dynamics and growth, as well as for planetesimal formation.more » « less
-
Abstract Generating mechanisms and parameterizations for enhanced turbulence in the wake of a seamount in the path of the Kuroshio are investigated. Full-depth profiles of finescale temperature, salinity, horizontal velocity, and microscale thermal-variance dissipation rate up- and downstream of the ∼10-km-wide seamount were measured with EM-APEX profiling floats and ADCP moorings. Energetic turbulent kinetic energy dissipation ratesand diapycnal diffusivitiesabove the seamount flanks extend at least 20 km downstream. This extended turbulent wake length is inconsistent with isotropic turbulence, which is expected to decay in less than 100 m based on turbulence decay time ofN−1∼ 100 s and the 0.5 m s−1Kuroshio flow speed. Thus, the turbulent wake must be maintained by continuous replenishment which might arise from (i) nonlinear instability of a marginally unstable vortex wake, (ii) anisotropic stratified turbulence with expected downstream decay scales of 10–100 km, and/or (iii) lee-wave critical-layer trapping at the base of the Kuroshio. Three turbulence parameterizations operating on different scales, (i) finescale, (ii) large-eddy, and (iii) reduced-shear, are tested. Averageεvertical profiles are well reproduced by all three parameterizations. Vertical wavenumber spectra for shear and strain are saturated over 10–100 m vertical wavelengths comparable to water depth with spectral levels independent ofεand spectral slopes of −1, indicating that the wake flows are strongly nonlinear. In contrast, vertical divergence spectral levels increase withε.more » « less
-
Abstract Realistic computational simulations in different oceanic basins reveal prevalent prograde mean flows (in the direction of topographic Rossby wave propagation along isobaths; aka topostrophy) on topographic slopes in the deep ocean, consistent with the barotropic theory of eddy-driven mean flows. Attention is focused on the western Mediterranean Sea with strong currents and steep topography. These prograde mean currents induce an opposing bottom drag stress and thus a turbulent boundary layer mean flow in the downhill direction, evidenced by a near-bottom negative mean vertical velocity. The slope-normal profile of diapycnal buoyancy mixing results in downslope mean advection near the bottom (a tendency to locally increase the mean buoyancy) and upslope buoyancy mixing (a tendency to decrease buoyancy) with associated buoyancy fluxes across the mean isopycnal surfaces (diapycnal downwelling). In the upper part of the boundary layer and nearby interior, the diapycnal turbulent buoyancy flux divergence reverses sign (diapycnal upwelling), with upward Eulerian mean buoyancy advection across isopycnal surfaces. These near-slope tendencies abate with further distance from the boundary. An along-isobath mean momentum balance shows an advective acceleration and a bottom-drag retardation of the prograde flow. The eddy buoyancy advection is significant near the slope, and the associated eddy potential energy conversion is negative, consistent with mean vertical shear flow generation for the eddies. This cross-isobath flow structure differs from previous proposals, and a new one-dimensional model is constructed for a topostrophic, stratified, slope bottom boundary layer. The broader issue of the return pathways of the global thermohaline circulation remains open, but the abyssal slope region is likely to play a dominant role.more » « less
An official website of the United States government
