Abstract This study probes the lithosphere‐asthenosphere system beneath 155 Ma Pacific seafloor using teleseismic S‐to‐p receiver functions at the Pacific Lithosphere Anisotropy and Thickness Experiment project ocean‐bottom‐seismometers. Within the lithosphere, a significant velocity decrease at 33–50 km depth is observed. This mid‐lithospheric discontinuity is consistent with the velocity contrast between the background mantle and thin, trapped layers of crystallized partial melt, in the form of either dolomite or garnet granulite. These melts possibly originated from deeper asthenospheric melting beneath the flanks of spreading centers, and were transported within the cooling lithosphere. A positive velocity increase of 3%–6% is observed at 130–155 km depth and is consistent with the base of a layer with partial melt in the asthenosphere. A shear velocity decrease associated with the lithosphere‐asthenosphere boundary at 95–115 km depth is permitted by the data, but is not required.
more »
« less
SS Precursor Imaging Reveals a Global Oceanic Asthenosphere Modulated by Sea‐Floor Spreading
Abstract The asthenosphere is a weak layer in the upper mantle where geotherm may exceed mantle solidus and partial melt occurs. Although it has been suggested that an increase in seismic wavespeed at about 220 km depth represents the base of the asthenosphere, seismic studies to‐date have not been able to provide evidence for the existence of such a global interface in the oceanic regions. In this study, we report observations of SS precursors reflected at this boundary throughout the global oceans. The average depth of the discontinuity is approximately 250 km, with a velocity jump of about 7% across the interface. Finite‐frequency tomography of SS precursor traveltimes reveals large depth variations of the discontinuity over short spatial distances, which explains the absence of this discontinuity in previous global stacks. The depth perturbations are characterized by alternating linear bands of shallow and deep anomalies that roughly follow seafloor age contours, indicating a fundamental connection between seafloor spreading and asthenosphere convection. The base of the asthenosphere is smoother under seafloors formed at slow‐spreading centers and becomes much rougher under seafloors formed at fast‐spreading centers with a spreading rate greater than mm/yr. This observation suggests that different geophysical processes at slow and fast spreading centers generate lithospheric plates with different chemical compositions and physical properties, which in turn influences the convection in the oceanic asthenosphere.
more »
« less
- PAR ID:
- 10648445
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 130
- Issue:
- 9
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A shallow sub‐seafloor seismic model that includes well‐determined seismic velocities and clarifies sediment‐crust discontinuities is needed to characterize the physical properties of marine sediments and the oceanic crust and to serve as a reference for deeper seismic modeling endeavors. This study estimates the seismic structure of marine sediments and the shallow oceanic crust of the Alaska‐Aleutian subduction zone at the Alaska Peninsula, using data from the Alaska Amphibious Community Seismic Experiment (AACSE). We measure seafloor compliance and Ps converted wave delays from AACSE ocean‐bottom seismometers (OBS) and seafloor pressure data and interpret these measurements using a joint Bayesian Monte Carlo inversion to produce a sub‐seafloor S‐wave velocity model beneath each available OBS station. The sediment thickness across the array varies considerably, ranging from about 50 m to 2.80 km, with the thickest sediment located in the continental slope. Lithological composition plays an important role in shaping the seismic properties of seafloor sediment. Deep‐sea deposits on the incoming plate, which contain biogenic materials, tend to have reduced S‐wave velocities, contrasting with the clay‐rich sediments in the shallow continental shelf and continental slope. A difference in S‐wave velocities is observed for upper oceanic crust formed at fast‐rate (Shumagin) and intermediate‐rate (Semidi) spreading centers. The reduced S‐wave velocities in the Semidi crust may be caused by increased faulting and possible lithological variations, related to a previous period of intermediate‐rate spreading.more » « less
-
SUMMARY Long-period underside SS wave reflections have been widely used to furnish global constraints on the presence and depth of mantle discontinuities and to document evidence for their origins, for example, mineral phase-transformations in the transition zone, compositional changes in the mid-mantle and dehydration-induced melting above and below the transition zone. For higher-resolution imaging, it is necessary to separate the signature of the source wavelet (SS arrival) from that of the distortion caused by the mantle reflectivity (SS precursors). Classical solutions to the general deconvolution problem include frequency-domain or time-domain deconvolution. However, these algorithms do not easily generalize when (1) the reflectivity series is of a much shorter period compared to the source wavelet, (2) the bounce point sampling is sparse or (3) the source wavelet is noisy or hard to estimate. To address these problems, we propose a new technique called SHARP-SS: Sparse High-Resolution Algorithm for Reflection Profiling with SS waves. SHARP-SS is a Bayesian deconvolution algorithm that makes minimal a-priori assumptions on the noise model, source signature and reflectivity structure. We test SHARP-SS using real data examples beneath the NoMelt Pacific Ocean region. We recover a low-velocity discontinuity at a depth of $$\sim 69 \pm 4$$ km which marks the base of the oceanic lithosphere, consistent with previous work derived from surface waves, body wave conversions, and ScS reverberations. We anticipate high-resolution fine mantle stratification imaging using SHARP-SS at locations where seismic stations are sparsely distributed.more » « less
-
The asthenosphere plays a fundamental role in present-day plate tectonics as its low viscosity controls how convection in the mantle below it is expressed at the Earth’s surface above. The origin of the asthenosphere, including the role of partial melting in reducing its viscosity and facilitating deformation, remains unclear. Here we analysed receiver-function data from globally distributed seismic stations to image the lower reaches of the asthenospheric low-seismic-velocity zone. We present globally widespread evidence for a positive seismic-velocity gradient at depths of ~150 km, which represents the base of a particularly low-velocity zone within the asthenosphere. This boundary is most commonly detected in regions with elevated upper-mantle temperatures and is best modelled as the base of a partially molten layer. The presence of the boundary showed no correlation with radial seismic anisotropy, which represents accumulated mantle strain, indicating that the inferred partial melt has no substantial effect on the large-scale viscosity of the asthenosphere. These results imply the presence of a globally extensive, partially molten zone embedded within the asthenosphere, but that low asthenospheric viscosity is controlled primarily by gradual pressure and temperature variations with depth.more » « less
-
SUMMARY We report finite-frequency imaging of the global 410- and 660-km discontinuities using boundary sensitivity kernels for traveltime measurements made on SS precursors. The application of finite-frequency sensitivity kernels overcomes resolution limits in previous studies associated with large Fresnel zones of SS precursors and their interferences with other seismic phases. In this study, we calculate the finite-frequency sensitivities of SS waves and their precursors based on a single-scattering (Born) approximation in the framework of travelling-wave mode summation. The global discontinuity surface is parametrized using a set of triangular gridpoints with a lateral spacing of about 4°, and we solve the linear finite-frequency inverse problem (2-D tomography) based on singular value decomposition (SVD). The new global models start to show a number of features that were absent (or weak) in ray-theoretical back-projection models at spherical harmonic degree l > 6. The thickness of the mantle transition zone correlates well with wave speed perturbations at a global scale, suggesting dominantly thermal origins for the lateral variations in the mantle transition zone. However, an anticorrelation between the topography of the 410-km discontinuity and wave speed variations is not observed at a global scale. Overall, the mantle transition zone is about 2–3 km thicker beneath the continents than in oceanic regions. The new models of the 410- and 660-km discontinuities show better agreement with the finite-frequency study by Lawrence & Shearer than other global models obtained using SS precursors. However, significant discrepancies between the two models exist in the Pacific Ocean and major subduction zones at spherical harmonic degree >6. This indicates the importance of accounting for wave interactions in the calculations of sensitivity kernels as well as the use of finite-frequency sensitivities in data quality control.more » « less
An official website of the United States government
