skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 3, 2026

Title: Winter precipitation measurements in New England: results from the Global Precipitation Measurement Ground Validation campaign in Connecticut
Abstract. Winter precipitation forecasts of phase and amount are challenging, especially in Northeast United States where mixed precipitation events from various synoptic systems frequently occur. Yet, there are not enough quality observations of winter precipitation, particularly microphysical properties from falling snow or mixed phase precipitation. During the winters of 2021–2022, 2022–2023, and 2023–2024, the NASA Global Precipitation Measurement (GPM) Ground Validation (GV) program conducted a field campaign at the University of Connecticut (UConn). The goal of this campaign was to observe various phases of winter precipitation and winter storm types to validate the GPM satellite precipitation products. Over the three winters at UConn, a total of 40 instruments were deployed across two observing sites that captured 117 precipitation events, including 19 phase transition events as indicated by the PARSIVEL2. These instruments included scanning and vertically pointing radars, along with suites of in-situ sensors. In addition, an unmanned aircraft system has been deployed in 2023–2024. Here, an overview of the different field deployments, instrumentation, and the datasets collected are presented. To showcase the observations, this article features a wide-ranging set of measurements collected from the instrument suite for the 28 February 2023 storm, during which six to eight inches of snow accumulated at the two different observing sites. Also included is a discussion on how these observations can be combined with other datasets to validate ground-based and remote sensing measurements and highlight important atmospheric processes that impact winter precipitation phase and amount. The datasets collected from this GPM GV field campaign are available at https://doi.org/10.5067/GPMGVUCONN/DATA101 (Cerrai et al., 2025).  more » « less
Award ID(s):
2029806
PAR ID:
10648528
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Copernicus Publications
Date Published:
Journal Name:
Earth System Science Data
Volume:
17
Issue:
11
ISSN:
1866-3516
Page Range / eLocation ID:
5783 to 5810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract During near-0°C surface conditions, diverse precipitation types (p-types) are possible, including rain, drizzle, freezing rain, freezing drizzle, ice pellets, wet snow, snow, and snow pellets. Near-0°C precipitation affects wide swaths of the United States and Canada, impacting aviation, road transportation, power generation and distribution, winter recreation, ecology, and hydrology. Fundamental challenges remain in observing, diagnosing, simulating, and forecasting near-0°C p-types, particularly during transitions and within complex terrain. Motivated by these challenges, the field phase of the Winter Precipitation Type Research Multi-scale Experiment (WINTRE-MIX) was conducted from 1 February – 15 March 2022 to better understand how multiscale processes influence the variability and predictability of p-type and amount under near-0°C surface conditions. WINTRE-MIX took place near the US / Canadian border, in northern New York and southern Quebec, a region with plentiful near-0°C precipitation influenced by terrain. During WINTRE-MIX, existing advanced mesonets in New York and Quebec were complemented by deployment of: (1) surface instruments, (2) the National Research Council Convair-580 research aircraft with W- and X-band Doppler radars and in situ cloud and aerosol instrumentation, (3) two X-band dual-polarization Doppler radars and a C-band dual-polarization Doppler radar from University of Illinois, and (4) teams collecting manual hydrometeor observations and radiosonde measurements. Eleven intensive observing periods (IOPs) were coordinated. Analysis of these WINTRE-MIX IOPs is illuminating how synoptic dynamics, mesoscale dynamics, and microscale processes combine to determine p-type and its predictability under near-0°C conditions. WINTRE-MIX research will contribute to improving nowcasts and forecasts of near-0°C precipitation through evaluation and refinement of observational diagnostics and numerical forecast models. 
    more » « less
  2. null (Ed.)
    Abstract Harsh winters and hazards such as blizzards are synonymous with the northern Great Plains of the United States. Studying these events is difficult; the juxtaposition of cold temperatures and high winds makes microphysical observations of both blowing and falling snow challenging. Historically, these observations have been provided by costly hydrometeor imagers that have been deployed for field campaigns or at select observation sites. This has slowed the development and validation of microphysics parameterizations and remote-sensing retrievals of various properties. If cheaper, more mobile instrumentation can be developed, this progress can be accelerated. Further, lowering price barriers can make deployment of instrumentation feasible for education and outreach purposes. The Blowing Snow Observations at the University of North Dakota: Education through Research (BLOWN-UNDER) Campaign took place during the winter of 2019-2020 to investigate strategies for obtaining microphysical measurements in the harsh North Dakota winter. Student led, the project blended education, outreach, and scientific objectives. While a variety of in-situ and remote-sensing instruments were deployed for the campaign, the most novel aspect of the project was the development and deployment of OSCRE, the Open Snowflake Camera for Research and Education. Images from this instrument were combined with winter weather educational modules to describe properties of snow to the public, K-12 students, and members of indigenous communities through a tribal outreach program. Along with an educational deployment of a Doppler on Wheels mobile radar, nearly 1000 individuals were reached during the project. 
    more » « less
  3. This study evaluates moist physics in the Weather Research and Forecasting (WRF) Model using observations collected during the Olympic Mountains Experiment (OLYMPEX) field campaign by the Global Precipitation Measurement (GPM) satellite, including data from the GPM Microwave Imager (GMI) and Dual-Frequency Precipitation Radar (DPR) instruments. Even though WRF using Thompson et al. microphysics was able to realistically simulate water vapor concentrations approaching the barrier, there was underprediction of cloud water content and rain rates offshore and over western slopes of terrain. We showed that underprediction of rain rate occurred when cloud water was underpredicted, establishing a connection between cloud water and rain-rate deficits. Evaluations of vertical hydrometeor mixing ratio profiles indicated that WRF produced too little cloud water and rainwater content, particularly below 2.5 km, with excessive snow above this altitude. Simulated mixing ratio profiles were less influenced by coastal proximity or midlatitude storm sector than were GMI profiles. Evaluations of different synoptic storm sectors suggested that postfrontal storm sectors were simulated most realistically, while warm sectors had the largest errors. DPR observations confirm the underprediction of rain rates noted by GMI, with no dependence on whether rain occurs over land or water. Finally, WRF underpredicted radar reflectivity below 2 km and overpredicted above 2 km, consistent with GMI vertical mixing ratio profiles. 
    more » « less
  4. Abstract Snow is a vital part of water resources, and sublimation may remove 10%–90% of snowfall from the system. To improve our understanding of the physics that govern sublimation rates, as well as how those rates might change with the climate, we deployed an array of four towers with over 100 instruments from NCAR’s Integrated Surface Flux System from November 2022 to June 2023 in the East River watershed, Colorado, in conjunction with the U.S. Department of Energy’s Surface Atmosphere Integrated Field Laboratory (SAIL) and the National Oceanic and Atmospheric Administration (NOAA)’s Study of Precipitation, the Lower Atmosphere and Surface for Hydrometeorology (SPLASH) campaigns. Mass balance observations, snow pits, particle flux sensors, and terrestrial lidar scans of the evolving snowfield demonstrated how blowing snow influences sublimation rates, which we quantified with latent heat fluxes measured by eddy-covariance systems at heights 1–20 m above the snow surface. Detailed temperature profiles at finer resolutions highlighted the role of the stable boundary layer. Four-stream radiometers indicated the important role of changing albedo in the energy balance and its relationship to water vapor losses. Collectively, these observations span scales from seconds to seasons, from boundary layer turbulence to valley circulation to mesoscale meteorology. We describe the field campaign, highlights in the observations, and outreach and education products we are creating to facilitate cross-disciplinary dialogue and convey relevant findings to those seeking to better understand Colorado River snow and streamflow. 
    more » « less
  5. Abstract The Winter Precipitation Type Research Multiscale Experiment (WINTRE-MIX) was conducted during February–March 2022 to observe multiscale processes impacting the variability and predictability of precipitation type and amount under near-freezing conditions over the Saint Lawrence River valley. Intensive observation period (IOP) 4 of the campaign occurred 17–18 February 2022 in association with an upper-level trough positioned over the north-central United States and a surface cyclone that traversed the study domain along a frontal boundary that extended northeast of the cyclone. The timing of precipitation-type transitions during the event was consistently too slow within operational forecast models at 2–5-day lead times. Consequently, this study aims to understand how forecast model representations of dynamical and thermodynamical processes on the synoptic scale to mesoscale may have influenced the predictability of precipitation type during IOP4. To do so, an ensemble of operational forecasts from the Global Ensemble Forecast System initialized 5 days prior to IOP4 was divided into three clusters according to the strength and position of the frontal zone over the Saint Lawrence River Valley during the event. Ensemble sensitivity analyses and spatial composites suggest that differences in the position of the frontal zone between clusters are dynamically linked to the differences in the structure of the associated upstream upper-level trough at prior forecast lead times. A diagnosis of the divergent circulation prior to the event suggests that feedback mechanisms between the surface cyclone, its attendant frontal boundaries, and the upper-level flow pattern help to further explain differences in the frontal zone between clusters. Significance StatementMixed-phase precipitation events, which can produce rain, freezing rain, ice pellets, and snow, are difficult to accurately forecast. This study investigates the large-scale processes influencing our ability to accurately forecast the precipitation type and amount during one of these events that was observed by a field campaign in February 2022. In forecasts initialized 5 days prior to the event, differences in the forecast upper-level atmospheric conditions led to differences in the forecast interactions between the upper-level flow and a low pressure system at the surface. As a result, there was large uncertainty in the predicted position of a surface front associated with the low pressure system and the precipitation-type distribution during the event. 
    more » « less