Abstract Oscillatory stresses are ubiquitous on Earth and other solid‐surface bodies. Tides and seasonal signals perpetually stress faults in the crust. Relating seismicity to these stresses offers fundamental insight into earthquake triggering. We present a simple model that describes seismicity rate due to perpetual oscillatory stresses. The model applies to large‐amplitude, nonharmonic, and quasiperiodic stressing. However, it is not valid for periods similar to the characteristic timeta. We show that seismicity rate from short‐period stressing scales with the stress amplitude, but for long periods with the stressing rate. Further, that background seismicity rateris equal to the average seismicity rate during short‐period stressing. We suggest thatAσ0may be underestimated if stresses are approximated by a single harmonic function. We revisit Manga et al. (2019,https://doi.org/10.1029/2019GL082892), which analyzed the tidal triggering of marsquakes and provide a rescaling of their seismicity rate response that offers a self‐consistent comparison of different hydraulic conditions.
more »
« less
This content will become publicly available on July 1, 2026
False Positives in the Identification of Dynamic Earthquake Triggering
Abstract Dynamic earthquake triggering is commonly identified through the temporal correlation between increased seismicity rates and global earthquakes that are possible triggering events. However, correlation does not imply causation. False positives may occur when unrelated seismicity rate changes coincidently occur at around the time of candidate triggers. We investigate the expected false positive rate in Southern California with globalM ≥ 6 earthquakes as candidate triggers. We compute the false positive rate by applying the statistical tests used by DeSalvio and Fan (2023),https://doi.org/10.1029/2023jb026487to synthetic earthquake catalogs with no real dynamic triggering. We find a false positive rate of ∼3.5%–8.5% when realistic earthquake clustering is present, consistent with the 95% confidence typically used in seismology. However, when this false positive rate is applied to the tens of thousands of spatial‐temporal windows in Southern California tested in DeSalvio and Fan (2023),https://doi.org/10.1029/2023jb026487, thousands of false positives are expected. The expected false positive occurrence is large enough to explain the observed apparent triggering following 70% of large global earthquakes (DeSalvio & Fan, 2023,https://doi.org/10.1029/2023jb026487), without requiring any true dynamic triggering. Aside from the known triggering from the nearby El Mayor‐Cucapah, Mexico, earthquake, the spatial and temporal characteristics of the reported triggering are indistinguishable from random false positives. This implies that best practice for dynamic triggering studies that depend on temporal correlation is to estimate the false positive rate and investigate whether the observed apparent triggering is distinguishable from the correlations that may occur by chance.
more »
« less
- Award ID(s):
- 2022441
- PAR ID:
- 10648617
- Publisher / Repository:
- AGU
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 130
- Issue:
- 7
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This letter compares the predictions of two expressions proposed for the porosity evolution in the context of rate and state friction. One (Segall & Rice, 1995,https://doi.org/10.1029/95jb02403) depends only on the sliding velocity; the other (Sleep, 1995,https://doi.org/10.1029/94jb03340) depends only on the state variable. Simulations of both are similar for velocity stepping and slide‐hold‐slide experiments. They differ significantly for normal effective stress jumps at constant sliding velocity. Segall and Rice (1995,https://doi.org/10.1029/95jb02403) predicts no change in the porosity; Sleep (1995,https://doi.org/10.1029/94jb03340) does. Simulation with a spring‐block model indicates that the magnitude of rapid slip events is essentially the same for the two formulations. Variations of porosity and induced pore pressure near rapid slip events are similar and consistent with experimental observations. Predicted porosity variations during slow slip intervals and the time at which rapid slip events occur are significantly different. The simulation indicates that changes in friction stress due to pore pressure changes exceed those due to rate and state effects.more » « less
-
Abstract We report on the mountain top observation of three terrestrial gamma‐ray flashes (TGFs) that occurred during the summer storm season of 2021. To our knowledge, these are the first TGFs observed in a mountaintop environment and the first published European TGFs observed from the ground. A gamma‐ray sensitive detector was located at the base of the Säntis Tower in Switzerland and observed three unique TGF events with coincident radio sferic data characteristic of TGFs seen from space. We will show an example of a “slow pulse” radio signature (Cummer et al., 2011,https://doi.org/10.1029/2011GL048099; Lu et al., 2011,https://doi.org/10.1029/2010JA016141; Pu et al., 2019,https://doi.org/10.1029/2019GL082743; Pu et al., 2020,https://doi.org/10.1029/2020GL089427), a −EIP (Lyu et al., 2016,https://doi.org/10.1002/2016GL070154; Lyu et al., 2021,https://doi.org/10.1029/2021GL093627; Wada et al., 2020,https://doi.org/10.1029/2019JD031730), and a double peak TGF associated with an extraordinarily powerful and complicated positive‐polarity sferic, where each TGF peak is possibly preceded by a short burst of stepped leader emission.more » « less
-
Abstract Terrestrial gamma ray flashes (TGFs) are high‐energy photon bursts that have been linked to short bursts of electromagnetic radiation associated with lightning activity. The most puzzling unexplained aspect of these events is that gamma rays originate from very compact regions of space while the source regions often seem to be optically dim and radio silent when compared to processes in ordinary lightning discharges. In this work, we report a mechanism that allows precise quantitative explanation of these peculiar features of TGFs and their relationships to the observed waveform characteristics of associated radio emissions. The mechanism represents an extension of earlier ideas on feedback processes in growth of relativistic runaway electron avalanches (Dwyer, 2003,https://doi.org/10.1029/2003GL017781), and is based on a recent demonstration of the dominant role of the photoelectric feedback on compact spatial scales (Pasko, Celestin, et al., 2023,https://doi.org/10.1029/2022GL102710). Since discussed events often occur in isolation or precede formation of lightning discharges, the reported findings propose a straightforward solution for the long‐standing problem of lightning initiation.more » « less
-
Abstract Jiang et al. (2023),https://doi.org/10.1029/2023gl103777argue that the apparent impact of the equatorial Atlantic on El Niño‐Southern Oscillation (ENSO) is a statistical artifact, and that the 6‐month lead correlation reported in previous studies stems from early developing ENSO events driving the equatorial Atlantic zonal mode (AZM) in boreal summer and maturing in winter. Closer examination, however, reveals that most AZM events develop too early to be driven by developing ENSO, and that the influence of decaying ENSO events has to be considered too. Thus, while early developing ENSO events may play a role, they do not fully explain observed AZM behavior. Our aim is not to argue for or against an AZM influence on ENSO, but rather to show that Jiang et al.’s analysis is insufficient to resolve this issue. More analysis will be needed for a deeper understanding of Atlantic‐Pacific interaction.more » « less
An official website of the United States government
