skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dissipation enhancement by shear flows for generalized diffusion operators in high dimension
We establish conditions for shear flows on the d -dimensional torus that give enhanced dissipation for the associated linear advection-diffusion equation for well-prepared data. The diffusion operator can be of fractional or high order and does not need to have constant coefficients. We then construct flows that satisfy these assumptions and obtain a quantitative estimate on the dissipation enhancement. Our examples generalize known examples in two space dimensions to the high-dimensional setting, which is relevant in applications to sampling a distribution and in optimization.  more » « less
Award ID(s):
1909103 2206453
PAR ID:
10648641
Author(s) / Creator(s):
 ;  
Publisher / Repository:
International Press
Date Published:
Journal Name:
Communications in Mathematical Sciences
Volume:
23
Issue:
8
ISSN:
1539-6746
Page Range / eLocation ID:
2203 to 2213
Subject(s) / Keyword(s):
generalized diffusion advection dissipation enhancement shear flow high-dimensional flows
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Complex topographies exhibit universal properties when fluvial erosion dominates landscape evolution over other geomorphological processes. Similarly, we show that the solutions of a minimalist landscape evolution model display invariant behavior as the impact of soil diffusion diminishes compared to fluvial erosion at the landscape scale, yielding complete self-similarity with respect to a dimensionless channelization index. Approaching its zero limit, soil diffusion becomes confined to a region of vanishing area and large concavity or convexity, corresponding to the locus of the ridge and valley network. We demonstrate these results using one dimensional analytical solutions and two dimensional numerical simulations, supported by real-world topographic observations. Our findings on the landscape self-similarity and the localized diffusion resemble the self-similarity of turbulent flows and the role of viscous dissipation. Topographic singularities in the vanishing diffusion limit are suggestive of shock waves and singularities observed in nonlinear complex systems. 
    more » « less
  2. Insects rely on their olfactory systems to detect odors and locate odor sources through highly efficient flapping-wing mechanisms. While previous studies on bio-inspired unsteady flows have primarily examined the aerodynamic functions of flapping wings, they have largely overlooked the effects of wing-induced unsteady flows on airborne odor stimuli. This study aims to explore how flapping kinematics influence odorant transport. Computational fluid dynamics simulations were employed to investigate unsteady flow fields and odorant transport by solving the Navier–Stokes and odor advection–diffusion equations. Both two-dimensional (2D) and three-dimensional (3D) simulations were conducted to visualize the flow fields and odor concentration distributions generated by pitching–plunging airfoils. Our findings reveal that higher Strouhal numbers, characterized by increased flapping frequency, produce stronger flow jets that enhance odor advection and dissipation downstream, while reducing odor concentration on the airfoil surface. In 2D simulations, symmetry breaking at high Strouhal numbers causes oblique advection of vortices and odor plumes. In contrast, 3D simulations exhibit bifurcated horseshoe-like vortex rings and corresponding odor plume bifurcations. These findings highlight the intricate coupling between unsteady aerodynamics and odor transport, offering valuable insights for bio-inspired designs and advanced olfactory navigation systems. 
    more » « less
  3. In this paper, we design and analyze second order positive and free energy satisfying schemes for solving diffusion equations with interaction potentials. The semi-discrete scheme is shown to conserve mass, preserve solution positivity, and satisfy a discrete free energy dissipation law for nonuniform meshes. These properties for the fully-discrete scheme (first order in time) remain preserved without a strict restriction on time steps. For the fully second order (in both time and space) scheme, we use a local scaling limiter to restore solution positivity when necessary. It is proved that such limiter does not destroy the second order accuracy. In addition, these schemes are easy to implement, and efficient in simulations over long time. Both one and two dimensional numerical examples are presented to demonstrate the performance of these schemes. 
    more » « less
  4. Abstract In this paper, we present an open-source software library that can be used to numerically simulate the advection and diffusion of a chemical concentration or heat density in a viscous fluid where a moving, elastic boundary drives the fluid and acts as a source or sink. The fully-coupled fluid-structure interaction problem of an elastic boundary in a viscous fluid is solved using Peskin’s immersed boundary method. The addition or removal of the concentration or heat density from the boundary is solved using an immersed boundary-like approach in which the concentration is spread from the immersed boundary to the fluid using a regularized delta function. The concentration or density over time is then described by the advection-diffusion equation and numerically solved. This functionality has been added to our software library, IB2d , which provides an easy-to-use immersed boundary method in two dimensions with full implementations in MATLAB and Python. We provide four examples that illustrate the usefulness of the method. A simple rubber band that resists stretching and absorbs and releases a chemical concentration is simulated as a first example. Complete convergence results are presented for this benchmark case. Three more biological examples are presented: (1) an oscillating row of cylinders, representative of an idealized appendage used for filter-feeding or sniffing, (2) an oscillating plate in a background flow is considered to study the case of heat dissipation in a vibrating leaf, and (3) a simplified model of a pulsing soft coral where carbon dioxide is taken up and oxygen is released as a byproduct from the moving tentacles. This method is applicable to a broad range of problems in the life sciences, including chemical sensing by antennae, heat dissipation in plants and other structures, the advection-diffusion of morphogens during development, filter-feeding by marine organisms, and the release of waste products from organisms in flows. 
    more » « less
  5. Abstract Examples of fluid flows driven by undulating boundaries are found in nature across many different length scales. Even though different driving mechanisms have evolved in distinct environments, they perform essentially the same function: directional transport of liquid. Nature-inspired strategies have been adopted in engineered devices to manipulate and direct flow. Here, we demonstrate how an undulating boundary generates large-scale pumping of a thin liquid near the liquid-air interface. Two dimensional traveling waves on the undulator, a canonical strategy to transport fluid at low Reynolds numbers, surprisingly lead to flow rates that depend non-monotonically on the wave speed. Through an asymptotic analysis of the thin-film equations that account for gravity and surface tension, we predict the observed optimal speed that maximizes pumping. Our findings reveal how proximity to free surfaces, which ensure lower energy dissipation, can be leveraged to achieve directional transport of liquids. 
    more » « less