Abstract Due to their diverse potential in advanced electronics and energy technologies, electrically conducting metal‐organic frameworks (MOFs) are drawing significant attention. Although hexagonal 2D MOFs generally display impressive electrical conductivity because of their dual in‐plane (through bonds) and out‐of‐plane (through π‐stacked ligands) charge transport pathways, notable differences between these two orthogonal conduction routes cause anisotropic conductivity and lower bulk conductivity. To address this issue, we have developed the first redox‐complementary dual‐ligand 2D MOF Cu3(HHTP)(HHTQ), featuring a π‐donor hexahydroxytriphenylene (HHTP) ligand and a π‐acceptor hexahydroxytricycloquinazoline (HHTQ) ligand located at alternate corners of the hexagons, which form either parallel HHTP and HHTQ stacks (AA stacking) or alternating HHTP/HHTQ stacks (AB stacking) along the c‐axis. Regardless of the stacking pattern, Cu3(HHTP)(HHTQ) supports more effective out‐of‐plane conduction through either separate π‐donor and π‐acceptor stacks or alternating π‐donor/acceptor stacks, while promoting in‐plane conduction through the pushpull‐like heteroleptic coordination network. As a result, Cu3(HHTP)(HHTQ) exhibits higher bulk conductivity (0.12 S/m at 295 K) than single‐ligand MOFs Cu3(HHTP)2(7.3 × 10−2S/m) and Cu3(HHTQ)2(5.9 × 10−4S/m). This work introduces a new design approach to improve the bulk electrical conductivity of 2D MOFs by supporting charge transport in both in‐ and out‐of‐plane direcations.
more »
« less
This content will become publicly available on June 18, 2026
Solvent-Directed Assembly of π-Stacked 3D Metal–Organic Frameworks with Tunable Conductivity Enhanced by C 60 Encapsulation
Metal-organic frameworks (MOFs) with tunable structures and unique host-guest chemistry have emerged as promising candidates for conductive materials. However, the tunability of conductivity and porosity in conductive MOFs and their interrelationship still lack a systematic study. Herein, we report the synthesis of a series of 3D copper MOFs (NU-4000 to NU-4003) using a triphenylene-based hexatopic carboxylate linker. By modulating the ratio of mixed solvents, distinct structural topologies and π-π stacking arrangements were achieved, resulting in electrical conductivity ranging from insulators (˂ 10-6 S/cm) to semiconductors (10-8 ~ 102 S/cm). Among them, NU-4003 features continuous π-π stacking and exhibits a conductivity of 1.7 × 10-6 S/cm. To further enhance conductivity, we encapsulated C60, a strong electron acceptor, within the circular channels of NU-4003, resulting in a remarkable conductivity increase to 140 S/cm with approximately 100% pore occupancy. Even at lower C60 loadings that leave 54% of the pore volume remaining accessible, the conductivity remains exceptionally high at 104 S/cm. This represents an eight-order magnitude enhancement and positions NU-4003-C60 as one of the most conductive 3D MOFs reported to date. This work integrates two charge transport pathways (through-space and electron donor and acceptor) into a single MOF host-guest material, achieving a significant enhancement in conductivity. This study demonstrates the potential of combining host-guest chemistry and π-π stacking to design conductive MOFs with permanent porosity maintained, providing a blueprint for the development of next-generation materials for electronic and energy-related applications.
more »
« less
- Award ID(s):
- 2119433
- PAR ID:
- 10648729
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- Journal of the American Chemical Society
- Volume:
- 147
- Issue:
- 24
- ISSN:
- 0002-7863
- Page Range / eLocation ID:
- 20899 to 20908
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Owing to their highly ordered crystalline structures and ease of introducing different electroactive meta ions and ligands, metal–organic frameworks (MOFs) have emerged as promising electrical and ion conducting materials. In this minireview, we highlighted recent advances in guest-induced electronic and ionic conductivity of MOFs, which are otherwise insulators or poor conductors. Examples of conductivity enhancement upon guest-induced framework oxidation or reduction, π-donor/acceptor stack formation, crosslinking of coordinatively unsaturated nodes, and binding of mobile Li+ and Mg2+ with the MOFs are discussed.more » « less
-
null (Ed.)Achieving a molecular-level understanding of how the structures and compositions of metal–organic frameworks (MOFs) influence their charge carrier concentration and charge transport mechanism—the two key parameters of electrical conductivity—is essential for the successful development of electrically conducting MOFs, which have recently emerged as one of the most coveted functional materials due to their diverse potential applications in advanced electronics and energy technologies. Herein, we have constructed four new alkali metal (Na, K, Rb, and Cs) frameworks based on an electron-rich tetrathiafulvalene tetracarboxylate (TTFTC) ligand, which formed continuous π-stacks, albeit with different π–π-stacking and S⋯S distances ( d π–π and d S⋯S ). These MOFs also contained different amounts of aerobically oxidized TTFTC˙ + radical cations that were quantified by electron spin resonance (ESR) spectroscopy. Density functional theory calculations and diffuse reflectance spectroscopy demonstrated that depending on the π–π-interaction and TTFTC˙ + population, these MOFs enjoyed varying degrees of TTFTC/TTFTC˙ + intervalence charge transfer (IVCT) interactions, which commensurately affected their electronic and optical band gaps and electrical conductivity. Having the shortest d π–π (3.39 Å) and the largest initial TTFTC˙ + population (∼23%), the oxidized Na-MOF 1-ox displayed the narrowest band gap (1.33 eV) and the highest room temperature electrical conductivity (3.6 × 10 −5 S cm −1 ), whereas owing to its longest d π–π (3.68 Å) and a negligible TTFTC˙ + population, neutral Cs-MOF 4 exhibited the widest band gap (2.15 eV) and the lowest electrical conductivity (1.8 × 10 −7 S cm −1 ). The freshly prepared but not optimally oxidized K-MOF 2 and Rb-MOF 3 initially displayed intermediate band gaps and conductivity, however, upon prolonged aerobic oxidation, which raised the TTFTC˙ + population to saturation levels (∼25 and 10%, respectively), the resulting 2-ox and 3-ox displayed much narrower band gaps (∼1.35 eV) and higher electrical conductivity (6.6 × 10 −5 and 4.7 × 10 −5 S cm −1 , respectively). The computational studies indicated that charge movement in these MOFs occurred predominantly through the π-stacked ligands, while the experimental results displayed the combined effects of π–π-interactions, TTFTC˙ + population, and TTFTC/TTFTC˙ + IVCT interaction on their electronic and optical properties, demonstrating that IVCT interactions between the mixed-valent ligands could be exploited as an effective design strategy to develop electrically conducting MOFs.more » « less
-
Herein, we report structural, computational, and conductivity studies on urea-directed self-assembled iodinated triphenylamine (TPA) derivatives. Despite numerous reports of conductive TPAs, the challenges of correlating their solid-state assembly with charge transport properties hinder the efficient design of new materials. In this work, we compare the assembled structures of a methylene urea bridged dimer of di-iodo TPA (1) and the corresponding methylene urea di-iodo TPA monomer (2) with a di-iodo mono aldehyde (3) control. These modifications lead to needle shaped crystals for 1 and 2 that are organized by urea hydrogen bonding, π⋯π stacking, I⋯I, and I⋯π interactions as determined by SC-XRD, Hirshfeld surface analysis, and X-ray photoelectron spectroscopy (XPS). The long needle shaped crystals were robust enough to measure the conductivity by two contact probe methods with 2 exhibiting higher conductivity values (∼6 × 10 −7 S cm −1 ) compared to 1 (1.6 × 10 −8 S cm −1 ). Upon UV-irradiation, 1 formed low quantities of persistent radicals with the simple methylurea 2 displaying less radical formation. The electronic properties of 1 were further investigated using valence band XPS, which revealed a significant shift in the valence band upon UV irradiation (0.5–1.9 eV), indicating the potential of these materials as dopant free p-type hole transporters. The electronic structure calculations suggest that the close packing of TPA promotes their electronic coupling and allows effective charge carrier transport. Our results show that ionic additives significantly improve the conductivity up to ∼2.0 × 10 −6 S cm −1 in thin films, enabling their implementation in functional devices such as perovskite or solid-state dye sensitized solar cells.more » « less
-
Abstract The crystal structures of the charge‐transfer (CT) cocrystals formed by the π‐electron acceptor 1,3,4,5,7,8‐hexafluoro‐11,11,12,12‐tetracyanonaphtho‐2,6‐quinodimethane (F6TNAP) with the planar π‐electron‐donor molecules triphenylene (TP), benzo[b]benzo[4,5]thieno[2,3‐d]thiophene (BTBT), benzo[1,2‐b:4,5‐b′]dithiophene (BDT), pyrene (PY), anthracene (ANT), and carbazole (CBZ) have been determined using single‐crystal X‐ray diffraction (SCXRD), along with those of two polymorphs of F6TNAP. All six cocrystals exhibit 1:1 donor/acceptor stoichiometry and adopt mixed‐stacking motifs. Cocrystals based on BTBT and CBZ π‐electron donor molecules exhibit brickwork packing, while the other four CT cocrystals show herringbone‐type crystal packing. Infrared spectroscopy, molecular geometries determined by SCXRD, and electronic structure calculations indicate that the extent of ground‐state CT in each cocrystal is small. Density functional theory calculations predict large conduction bandwidths and, consequently, low effective masses for electrons for all six CT cocrystals, while the TP‐, BDT‐, and PY‐based cocrystals are also predicted to have large valence bandwidths and low effective masses for holes. Charge‐carrier mobility values are obtained from space‐charge limited current (SCLC) measurements and field‐effect transistor measurements, with values exceeding 1 cm2V−1s1being estimated from SCLC measurements for BTBT:F6TNAP and CBZ:F6TNAP cocrystals.more » « less
An official website of the United States government
