skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Fourier-basis structured illumination imaging with an array of integrated optical phased arrays
Active imaging and structured illumination originated in “bulk” optical systems: free-space beams controlled with lenses, spatial light modulators, gratings, and mirrors to structure the optical diffraction and direct the beams onto the target. Recently, optical phased arrays have been developed with the goal of replacing traditional bulk active imaging systems with integrated optical systems. In this paper, we demonstrate the first array of optical phased arrays forming a composite aperture. This composite aperture is used to implement a Fourier-based structured-illumination imaging system, where moving fringe patterns are projected on a target and a single integrating detector is used to reconstruct the spatial structure of the target from the time variation of the back-scattered light. We experimentally demonstrate proof-of-concept Fourier-basis imaging in 1D using a six-element array of optical phased arrays, which interfere pairwise to sample up to 11 different spatial Fourier components, and reconstruct a 1D delta-function target. This concept addresses a key complexity constraint in scaling up integrated photonic apertures by requiring only N elements in a sparse array to produce an image with N 2 resolvable spots.  more » « less
Award ID(s):
1817174
PAR ID:
10648779
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Optica
Date Published:
Journal Name:
Journal of the Optical Society of America A
Volume:
38
Issue:
10
ISSN:
1084-7529
Page Range / eLocation ID:
B19
Subject(s) / Keyword(s):
Lidar
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It has recently been understood that the complete global symmetry of finite group topological gauge theories contains the structure of a higher-group. Here we study the higher-group structure in (3+1)D\mathbb{Z}_2 2 gauge theory with an emergent fermion, and point out that pumping chiralp+ip p + i p topological states gives rise to a\mathbb{Z}_{8} 8 0-form symmetry with mixed gravitational anomaly. This ordinary symmetry mixes with the other higher symmetries to form a 3-group structure, which we examine in detail. We then show that in the context of stabilizer quantum codes, one can obtain logical CCZ and CS gates by placing the code on a discretization ofT^3 T 3 (3-torus) andT^2 \rtimes_{C_2} S^1 T 2 C 2 S 1 (2-torus bundle over the circle) respectively, and pumpingp+ip p + i p states. Our considerations also imply the possibility of a logicalT T gate by placing the code on\mathbb{RP}^3 3 and pumping ap+ip p + i p topological state. 
    more » « less
  2. Abstract Quantitative phase imaging (QPI) recovers the exact wavefront of light from intensity measurements. Topographical and optical density maps of translucent microscopic bodies can be extracted from these quantified phase shifts. We demonstrate quantitative phase imaging at the tip of a coherent fiber bundle using chromatic aberrations inherent in a silicon nitride hyperboloid metalens. Our method leverages spectral multiplexing to recover phase from multiple defocus planes in a single capture using a color camera. Our 0.5 mm aperture metalens shows robust quantitative phase imaging capability with a$${28}^{\circ}$$ 28 field of view and 0.$${2}{\pi}$$ 2 π phase resolution ( ~ 0.$${1}{\lambda}$$ 1 λ in air) for experiments with an endoscopic fiber bundle. Since the spectral functionality is encoded directly in the imaging lens, the metalens acts both as a focusing element and a spectral filter. The use of a simple computational backend will enable real-time operation. Key limitations in the adoption of phase imaging methods for endoscopy such as multiple acquisition, interferometric alignment or mechanical scanning are completely mitigated in the reported metalens based QPI. 
    more » « less
  3. Measurements are presented of the cross-section for the central exclusive production ofJ/\psi\to\mu^+\mu^- J / ψ μ + μ and\psi(2S)\to\mu^+\mu^- ψ ( 2 S ) μ + μ processes in proton-proton collisions at\sqrt{s} = 13 \ \mathrm{TeV} s = 13 T e V with 2016–2018 data. They are performed by requiring both muons to be in the LHCb acceptance (with pseudorapidity2<\eta_{\mu^±} < 4.5 2 < η μ ± < 4.5 ) and mesons in the rapidity range2.0 < y < 4.5 2.0 < y < 4.5 . The integrated cross-section results are\sigma_{J/\psi\to\mu^+\mu^-}(2.0 σ J / ψ μ + μ ( 2.0 < y J / ψ < 4.5 , 2.0 < η μ ± < 4.5 ) = 400 ± 2 ± 5 ± 12 p b , σ ψ ( 2 S ) μ + μ ( 2.0 < y ψ ( 2 S ) < 4.5 , 2.0 < η μ ± < 4.5 ) = 9.40 ± 0.15 ± 0.13 ± 0.27 p b , where the uncertainties are statistical, systematic and due to the luminosity determination. In addition, a measurement of the ratio of\psi(2S) ψ ( 2 S ) andJ/\psi J / ψ cross-sections, at an average photon-proton centre-of-mass energy of1\ \mathrm{TeV} 1 T e V , is performed, giving$ = 0.1763 ± 0.0029 ± 0.0008 ± 0.0039,$$ where the first uncertainty is statistical, the second systematic and the third due to the knowledge of the involved branching fractions. For the first time, the dependence of theJ/\psi$ J / ψ and\psi(2S) ψ ( 2 S ) cross-sections on the total transverse momentum transfer is determined inpp p p collisions and is found consistent with the behaviour observed in electron-proton collisions. 
    more » « less
  4. Abstract We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive$$\rho ^0$$ ρ 0 meson muoproduction at COMPASS using 160 GeV/cpolarised$$ \mu ^{+}$$ μ + and$$ \mu ^{-}$$ μ - beams impinging on a liquid hydrogen target. The measurement covers the kinematic range 5.0 GeV/$$c^2$$ c 2 $$< W<$$ < W < 17.0 GeV/$$c^2$$ c 2 , 1.0 (GeV/c)$$^2$$ 2 $$< Q^2<$$ < Q 2 < 10.0 (GeV/c)$$^2$$ 2 and 0.01 (GeV/c)$$^2$$ 2 $$< p_{\textrm{T}}^2<$$ < p T 2 < 0.5 (GeV/c)$$^2$$ 2 . Here,Wdenotes the mass of the final hadronic system,$$Q^2$$ Q 2 the virtuality of the exchanged photon, and$$p_{\textrm{T}}$$ p T the transverse momentum of the$$\rho ^0$$ ρ 0 meson with respect to the virtual-photon direction. The measured non-zero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons ($$\gamma ^*_T \rightarrow V^{ }_L$$ γ T V L ) indicate a violation ofs-channel helicity conservation. Additionally, we observe a dominant contribution of natural-parity-exchange transitions and a very small contribution of unnatural-parity-exchange transitions, which is compatible with zero within experimental uncertainties. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow one to evaluate in a model-dependent way the role of parton helicity-flip GPDs in exclusive$$\rho ^0$$ ρ 0 production. 
    more » « less
  5. MXenes have demonstrated potential for various applications owing to their tunable surface chemistry and metallic conductivity. However, high temperatures can accelerate MXene film oxidation in air. Understanding the mechanisms of MXene oxidation at elevated temperatures, which is still limited, is critical in improving their thermal stability for high-temperature applications. Here, we demonstrate that Ti 3 C 2 T x MXene monoflakes have exceptional thermal stability at temperatures up to 600 ° C in air, while multiflakes readily oxidize in air at 300 ° C. Density functional theory calculations indicate that confined water between Ti 3 C 2 T x flakes has higher removal energy than surface water and can thus persist to higher temperatures, leading to oxidation. We demonstrate that the amount of confined water correlates with the degree of oxidation in stacked flakes. Confined water can be fully removed by vacuum annealing Ti 3 C 2 T x films at 600 ° C, resulting in substantial stability improvement in multiflake films (can withstand 600 ° C in air). These findings provide fundamental insights into the kinetics of confined water and its role in Ti 3 C 2 T x oxidation. This work enables the use of stable monoflake MXenes in high-temperature applications and provides guidelines for proper vacuum annealing of multiflake films to enhance their stability. 
    more » « less