skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Productivity Drives Leaf Mycobiome Diversity Patterns at Global and Continental Scales
ABSTRACT AimStudies assessing large‐scale patterns of microbial diversity have predominantly focused on free‐living microorganisms, often failing to link observed patterns to established theories regarding the maintenance of global diversity patterns. We aimed to determine whether foliar fungi on two closely related grass hosts—Heteropogon contortusandThemeda triandra—display a commonly observed latitudinal gradient in species richness and determine whether host identity, energy (temperature and precipitation), climate seasonality, fire frequency and grass evolutionary history drive the observed patterns in species richness and composition. LocationPaleotropical. Time PeriodContemporary. Major Taxa StudiedFoliar fungi. MethodsFoliar fungal diversity was quantified from 201 leaf samples ofT. triandraandH. contortuscollected across the distributional range of these species. Mixed effects models were used to quantify patterns of diversity and their correlates among and within continents. Ordinations were used to assess drivers of composition. ResultsFoliar fungi displayed consistent latitudinal diversity gradients in richness. Energy was a strong driver of richness at inter‐continental and continental scales, while other factors had inconsistent impacts on richness among scales, hosts and guilds. Globally, richness was higher in regions of higher growing season temperatures and where hosts were present for longer periods. Composition was primarily structured by geographic region at the global scale, indicating that distance was a dominant driver of community composition. Within Australia, temperature and rainfall seasonality and the amount of growing season rainfall, were the dominant drivers of both richness and composition. Main ConclusionsWe find some support for the idea that foliar fungal species diversity is governed by the same factors as many macro‐organisms (energy availability and evolutionary history) at inter‐continental scales, but also that fungal diversity and composition in the highly seasonal continent of Australia were driven by factors that shape tropical grassy ecosystems, namely climate seasonality and fire.  more » « less
Award ID(s):
1929514
PAR ID:
10649043
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Global Ecology and Biodiversity
Date Published:
Journal Name:
Global Ecology and Biogeography
Volume:
34
Issue:
7
ISSN:
1466-822X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wiley (Ed.)
    ABSTRACT The plant–mycorrhizal fungi relationship can range from mutualistic to parasitic as a function of the fungal taxa involved, plant ontogeny, as well as the availability of resources. Despite the implications this relationship may have on forest carbon cycling and storage, we know little about how mature trees may be impacted by mycorrhizae and how this impact may vary across the landscape. We collected growth data of two arbuscular mycorrhizal fungi (AMF)‐associated tree species,Acer rubrumandA. saccharum, and one ectomycorrhizal fungi (EMF)‐associated tree species,Quercus rubra, to assess how the mycorrhizal fungi–plant association may vary along a gradient of nitrogen (N) availability. Individual assessments of fungal taxa relative abundances showed non‐linear associations with tree growth; positive associations for the two AMF‐associated trees were mostly under low N, whereas positive to neutral associations for the EMF‐associated tree mainly took place at high N. OnlyA. rubrumexhibited greater tree growth with its tree soil‐specific mycorrhizal community when compared with predictions under a random mycorrhizal soil community. Because mycorrhizal fungi are likely to mediate how plants respond to warming, increasing levels of N deposition and of atmospheric CO2, understanding these relationships is critical to accurately forecasting tree growth. 
    more » « less
  2. Abstract AimWe explore the evolutionary history of the ogre‐faced spiders (Deinopis) from their Early Cretaceous origins to present day. Specifically, we investigate how vicariance and dispersal have shaped distribution patterns of this lineage. Within the Caribbean, we test the role ofGAARlandia, a hypothesized land bridge that connected South America to the Greater Antilles during the Eocene–Oligocene transition (~35–33 Ma), in the biogeography ofDeinopis. TaxonAraneae: Deinopidae:Deinopis. LocationCaribbean islands, with additional global exemplars. MethodsCombining standard Sanger sequence data with an Anchored Hybrid Enrichment (AHE) phylogenomic dataset, we use Bayesian inference to estimate the phylogenetic relationships ofDeinopis. “BioGeoBEARS” is used to test theGAARlandia hypothesis, and to pinpoint major dispersal events in the biogeographic history ofDeinopis. ResultsThe phylogeny supports the nesting of a Caribbean clade within a continental grade. Model comparisons indicateGAARlandia as the best fitting model, and the biogeographic analyses reflect the geologic history within the Caribbean. Ancient and recent overwater dispersal events are also indicated within this lineage. There is also an ancient 113 Ma split into Old and New World clades. Main ConclusionsTheDeinopisphylogeny corresponds well with geography. This is reflected in the support for theGAARlandia land bridge hypothesis and the phylogenetic relationships within and among Caribbean islands mirroring nuances of Caribbean geologic history. Overwater dispersal also plays an important role in the biogeographic history of this lineage as implicated in the colonization of the volcanic and sedimentary Lesser Antilles and in a “reverse” colonization of North America. The spider family Deinopidae is an ancient lineage with origins dating back to Gondwana. While overwater dispersal has clearly played a role in the biogeography of the genus, theDeinopisphylogeny bears a strong signature of ancient geological events. 
    more » « less
  3. ABSTRACT In integrative distributional, demographic and coalescent (iDDC) modelling, a critical component is the statistical relationship between habitat suitability and local population sizes. This study explores this relationship in twoEnyaliuslizard species from the Brazilian Atlantic Forest: the high‐elevationE. iheringiiand low‐elevationE. catenatusand how this transformation affects spatiotemporal demographic inference. Most previous iDDC studies assumed a linear relationship, but this study hypothesises that the relationship may be nonlinear, especially for high‐elevation species with broader environmental tolerances. We test two key hypotheses: (1) The habitat suitability to population size relationship is nonlinear forE. iheringii(high‐elevation) and linear forE. catenatus(low‐elevation); and (2)E. iheringiiexhibits higher effective migration across populations thanE. catenatus. Our findings provide clear support for hypothesis (2), but mixed support for hypothesis (1), with strong model support for a nonlinear transformation in the high‐elevationE. iheringiiand some (albeit weak) support for a nonlinear transformation also inE. catenatus. The iDDC models allow us to generate landscape‐wide maps of predicted genetic diversity for both species, revealing that genetic diversity predictions for the high‐elevationE. iheringiialign with estimated patterns of historical range stability, whereas predictions for low‐elevationE. catenatusare distinct from range‐wide stability predictions. This research highlights the importance of accurately modelling the habitat suitability to population size relationship in iDDC studies, contributing to our understanding of species' demographic responses to environmental changes. 
    more » « less
  4. Abstract BACKGROUNDHaematococcus pluvialis(Hp), a freshwater chlorophyte microalga, is a major natural source of astaxanthin (ASX), a potent antioxidant with anti‐inflammatory, anticarcinogenic and muscle pigmentation properties. However,ASXbioavailability is limited by the rigid cyst wall and, although cell wall rupture improves bioavailability, the free form is unstable under high temperatures,pHextremes, light or oxygen. Encapsulation techniques improveASXstability, making it suitable for functional foods and aquaculture, especially in salmonid feeds where natural pigments are preferred. The present study evaluates the stability of weakenedHp(Hpw) biomass encapsulated in alginate (ALG) via ionic gelation. RESULTSEncapsulation utilizingALGachieved high efficiency (97 ± 2.63%) and loading capacity (32 ± 0.90%), confirming its suitability as a wall material.ALG‐Hpwhydrogels displayed significant color intensity, enhancing potential feed or food hues. Low bulk density (0.59 ± 0.01 g cm−3), moisture content (11.97 ± 0.20%) and water activity (0.28 ± 0.00) suggest minimized oxidation processes. Hydrogels measured 1.30 ± 0.06 mm with a uniform sphericity factor of 0.058 ± 0.03. Confocal laser scanning microscopy confirmed uniformHpwdistribution andscanning electron microscopyrevealed fissure‐free surfaces, ensuring minimal permeability. DPPH (i.e. 2,2‐diphenyl‐1‐picrylhydrazyl) scavenging activity was similar betweenHpwextract (38.32 ± 2.30% to 96.32 ± 0.88%) andALG‐Hpwhydrogels (33.20 ± 1.55% to 93.30 ± 0.44%).ALGIncreasedHpwdecomposition temperature by 40.97 °C. Encapsulation ofHpwinALGsignificantly enhanced the bioaccessibility ofASX. TheALG‐based encapsulation effectively preservedASXstability, retaining over 90% of its content under storage conditions. CONCLUSIONALGis a suitable biopolymer for encapsulatingHpw, preserving antioxidant activity, and enhancing thermal properties, making it valuable for broader applications. © 2025 Society of Chemical Industry. 
    more » « less
  5. ABSTRACT ObjectivesMost human brains exhibit left hemisphere asymmetry for planum temporale (PT) surface area and gray matter volume, which is interpreted as cerebral lateralization for language. Once considered a uniquely human feature, PT asymmetries have now been documented in chimpanzees and olive baboons. The goal of the current study was to further investigate the evolution of PT asymmetries in nonhuman primates. Materials and MethodsWe measured PT surface area in chimpanzees (Pan troglodytes,n = 90), bonobos (Pan paniscus,n = 21), gorillas (Gorilla gorilla,n = 34), orangutans (Pongospp.,n = 33), olive baboons (Papio anubis,n = 105), rhesus macaques (Macaca mulatta,n = 144), and tufted capuchins (Sapajus apella,n = 29) from magnetic resonance imaging scans. ResultsOur findings reveal significant leftward biases in PT surface area among chimpanzees, gorillas, olive baboons, rhesus macaques, and capuchins. We did not find significant population‐level asymmetries among orangutans and bonobos, which could be due, in part, to small sample sizes. We also detected significant age effects for rhesus macaques only, and no significant sex effects for any species. DiscussionThe observation of a population‐level leftward bias for PT surface area among not only hominids (chimpanzees and gorillas), but also two cercopithecoids (olive baboons and rhesus macaques) and one platyrrhine (tufted capuchins) suggests that PT lateralization was likely present in some early anthropoid primate ancestors and relatives. This provides further evidence that human brains have since undergone changes to the size and connectivity of the PT in response to selection for the cognitive processes needed to support the evolution of language and speech. 
    more » « less