skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Similar Genetic Routes Are Independently Targeted for Mimetic Color Convergence in Bumble Bees
Abstract Bumble bees (Bombus) exhibit exceptional diversity in setal body color patterns, largely as a result of convergence onto multiple Mullerian mimicry patterns globally. When multiple species cross the same sets of mimicry complexes, they can acquire the same color polymorphisms, providing replicates of phenotypic evolution. This study examines the genetic basis of parallel color pattern acquisition in three bumble bee taxon pairs in western North America that shift between orange-red and black mid-abdominal segmental coloration in Rocky Mountain and Pacific Coastal mimicry regions: polymorphic Bombus vancouverensis and B. melanopygus, and sister species B. huntii and B. vosnesenskii. Initial gene targets are identified using a genome-wide association study, while cross-developmental transcriptomics reveals genetic pathways leading to final pigmentation genes. The data show all three lineages independently target the regulatory region of a segmental-fate determining Hox gene, Abdominal B (Abd-B), for this color transition. For B. vancouverensis and B. melanopygus, this involves different deletions in the same location, and all mimicry pairs differentially express Abd-B and ncRNAs in this locus. Transcriptomics reveals a shared core gene network across species, where Abd-B interacts with nubbin and pigment enzyme ebony to decrease black melanin production in favor of paler, redder morphs. Expression of multiple genes in the melanin biosynthesis pathway is modified to promote this phenotype, with differing roles by taxon. Replicated morphologies unveil key genes and a Hox gene hotspot, while enabling evolutionary tracking of genetic changes to phenotypic changes and informing how gene regulatory networks evolve.  more » « less
Award ID(s):
2126418 2126417
PAR ID:
10649057
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Takahashi, Aya
Publisher / Repository:
Molecular Biology and Evolution
Date Published:
Journal Name:
Molecular Biology and Evolution
Volume:
42
Issue:
9
ISSN:
0737-4038
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bumble bees are ecologically and economically important insect pollinators. Three abundant and widespread species in western North America, Bombus bifarius, Bombus vancouverensis, and Bombus vosnesenskii, have been the focus of substantial research relating to diverse aspects of bumble bee ecology and evolutionary biology. We present de novo genome assemblies for each of the three species using hybrid assembly of Illumina and Oxford Nanopore Technologies sequences. All three assemblies are of high quality with large N50s (> 2.2 Mb), BUSCO scores indicating > 98% complete genes, and annotations producing 13,325 - 13,687 genes, comparing favorably with other bee genomes. Analysis of synteny against the most complete bumble bee genome, Bombus terrestris, reveals a high degree of collinearity. These genomes should provide a valuable resource for addressing questions relating to functional genomics and evolutionary biology in these species. 
    more » « less
  2. Hines, Heather (Ed.)
    Abstract Biogeographic clines in morphology along environmental gradients can illuminate forces influencing trait evolution within and between species. Latitude has long been studied as a driver of morphological clines, with a focus on body size and temperature. However, counteracting environmental pressures may impose constraints on body size. In montane landscapes, declines in air density with elevation can negatively impact flight performance in volant species, which may contribute to selection for reduced body mass despite declining temperatures. We examine morphology in two bumble bee (Hymenoptera: Apidae: Bombus Latreille) species, Bombus vancouverensis Cresson and Bombus vosnesenskii Radoszkowski, across mountainous regions of California, Oregon, and Washington, United States. We incorporate population genomic data to investigate the relationship between genomic ancestry and morphological divergence. We find that B. vancouverensis, which tends to be more specialized for high elevations, exhibits stronger spatial-environmental variation, being smaller in the southern and higher elevation parts of its range and having reduced wing loading (mass relative to wing area) at high elevations. Bombus vosnesenskii, which is more of an elevational generalist, has substantial trait variation, but spatial-environmental correlations are weak. Population structure is stronger in the smaller B. vancouverensis, and we find a significant association between elevation and wing loading after accounting for genetic structure, suggesting the possibility of local adaptation for this flight performance trait. Our findings suggest that some conflicting results for body size trends may stem from distinct environmental pressures that impact different aspects of bumble bee ecology, and that different species show different morphological clines in the same region. 
    more » « less
  3. Abstract Understanding the myriad avenues through which spatial and environmental factors shape evolution is a major focus in biological research. From a molecular perspective, much work has been focused on genomic sequence variation; however, recently there has been increased interest in how epigenetic variation may be shaped by different variables across the landscape. DNA methylation has been of particular interest given that it is dynamic and can alter gene expression, potentially offering a path for a rapid response to environmental change. We utilized whole genome enzymatic methyl sequencing to evaluate the distribution of CpG methylation across the genome and to analyze patterns of spatial and environmental association in the methylomes of two broadly distributed montane bumble bees (Bombus vancouverensis Cresson and Bombus vosnesenskii Radoszkowski) across elevational gradients in the western US. Methylation patterns in both species are similar at the genomic scale with ∼1% of CpGs being methylated and most methylation being found in exons. At the landscape scale, neither species exhibited strong spatial or population structuring in patterns of methylation, although some weak relationships between methylation and distance or environmental variables were detected. Differential methylation analysis suggests a stronger environment association in B. vancouverensis given the larger number of differentially methylated CpG's compared to B. vosnesenskii. We also observed only a handful of genes with both differentially methylated CpGs and previously detected environmentally associated outlier SNPs. Overall results reveal a weak but present pattern in variation in methylation over the landscape in both species. 
    more » « less
  4. Ware, Jessica (Ed.)
    Abstract Broadly distributed species experience divergent abiotic conditions across their ranges that may drive local adaptation. Montane systems where populations are distributed across both latitudinal and elevational gradients are especially likely to produce local adaptation due to spatial variation in multiple abiotic factors, including temperature, oxygen availability, and air density. We use whole-genome resequencing to evaluate the landscape genomics of Bombus vancouverensis Cresson (Hymenoptera: Apidae), a common montane bumble bee that is distributed throughout the western part of North America. Combined statistical approaches revealed several large windows of outlier SNPs with unusual levels of differentiation across the region and indicated that isothermality and elevation were the environmental features most strongly associated with these variants. Genes found within these regions had diverse biological functions, but included neuromuscular function, ion homeostasis, oxidative stress, and hypoxia that could be associated with tolerance of temperature, desiccation, or high elevation conditions. The whole-genome sequencing approach revealed outliers occurred in genome regions with elevated linkage disequilibrium, elevated mean FST, and low intrapopulation nucleotide diversity. Other kinds of structural variations were not widely associated with environmental predictors but did broadly match geographic separation. Results are consistent with other studies suggesting that regions of low recombination may harbor adaptive variation in bumble bees within as well as between species and refine our understanding of candidate genes that could be further investigated as possible targets of selection across the B. vancouverensis range. 
    more » « less
  5. Abstract Accurate species delimitation is critical to identifying the conservation status of species. Molecular species delimitation methods have revealed previously unrecognized cryptic species across the taxonomic spectrum. However, studies vary in the molecular markers selected, analytical approaches used, and taxon sampling, which sometimes results in conflicting conclusions. One example of such a conflict is seen in the species delimitation analyses of the western bumble bee,Bombus occidentalis. This species was once an abundant insect pollinator in western North America but has declined severely since the mid 1990s and is predicted to continue to diminish under even optimistic future climate scenarios. Complicating this conservation crisis, the species status ofB. occidentalishas varied over time, with most recent studies recognizing one or two species. Previous studies that used molecular methods to address this question focused on a Bayesian phylogeny of the mitochondrialcytochrome oxidase I(COI) gene. Phylogenetic studies that focus on a single gene are criticized for misrepresenting the evolutionary history of species because nuclear and mitochondrial genomes, and even some genes within them, may have different evolutionary patterns. We tested a two species hypothesis of theB. occidentaliscomplex using nuclear (ultraconserved elements) and mitochondrial (COI) markers to infer maximum likelihood and Bayesian phylogenies for the taxa. We present our results and conclusions from eight species delimitation methods. Based on the genomic, morphological and geographic differences between the taxa we find support for the two species hypothesis, withB. occidentalisandB. mckayias separate species. We discuss the strengths and limitations of each genetic dataset and delimitation method, make recommendations for best practices, and highlight opportunities for equitable knowledge and technology development for phylogenomics in conservation biology. 
    more » « less