skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 1, 2026

Title: Inhomogeneity, fluctuations, and gap filling in disordered overdoped cuprates
Several recent experiments have challenged the premise that cuprate high-temperature superconductors approach conventional Landau-BCS behavior in the high-doping limit. We argue, based on an analysis of their superconducting spectra, that anomalous properties seen in the most-studied overdoped cuprates require a pairing interaction that is strongly inhomogeneous on nm length scales. This is consistent with recent proposals that the “strange-metal” phase above T c in the same doping range arises from a spatially random interaction. We show, via mean-field Bogoliubov-de Gennes (BdG) calculations and time-dependent Ginzburg-Landau (TDGL) simulations, that key features of the observed tunneling spectra are reproduced when both inhomogeneity and thermal phase fluctuations are accounted for. In accord with experiments, BdG calculations find that low- T spectra are highly inhomogeneous and exhibit a low-energy spectral shoulder and broad coherence peaks. However, the spectral gap in this approach becomes homogeneous at high T , in contrast to experiments. This is resolved when thermal fluctuations are included within TDGL; in this case, global phase coherence is lost at the superconducting T c via a broadened BKT transition, while robust phase-coherent superconducting islands persist well above T c . The local spectrum remains inhomogeneous at T c , and the gap is found to fill instead of close with increasing temperature.  more » « less
Award ID(s):
2231821
PAR ID:
10649083
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Physical Review Journals
Date Published:
Journal Name:
Physical Review Research
Volume:
7
Issue:
4
ISSN:
2643-1564
Subject(s) / Keyword(s):
Cuprate superconductors, disorder, phase fluctuations
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The superconducting state of the heavy-fermion metal UTe 2 has attracted considerable interest because of evidence of spin-triplet Cooper pairing and nontrivial topology. Progress on these questions requires identifying the presence or absence of nodes in the superconducting gap function and their dimension. In this article, we report a comprehensive study of the influence of disorder on the thermal transport in the superconducting state of UTe 2 . Through detailed measurements of the magnetic-field dependence of the thermal conductivity in the zero-temperature limit, we obtain clear evidence of the presence of point nodes in the superconducting gap for all samples with transition temperatures ranging from 1.6 to 2.1 K obtained by different synthesis methods, including a refined self-flux method. This robustness implies the presence of symmetry-imposed nodes throughout the range studied, further confirmed via disorder-dependent calculations of the thermal transport in a model with a single pair of nodes. In addition to capturing the temperature dependence of the thermal conductivity up to T c , this model provides some information about the locations of the nodes, suggesting a B 1 u or B 2 u symmetry for the superconducting order parameter. Additionally, comparing the new, ultrahigh conductivity samples to older samples reveals a crossover between a low-field and a high-field regime at a single value of the magnetic field in all samples. In the high-field regime, the thermal conductivity at different disorder levels differs from each other by a simple offset, suggesting that some simple principle determines the physics of the mixed state, a fact which may illuminate trends observed in other clean nodal superconductors. Published by the American Physical Society2025 
    more » « less
  2. Significant progress toward a theory of high-temperature superconductivity in cuprates has been achieved via the study of effective one- and three-band Hubbard models. Nevertheless, material-specific predictions, while essential for constructing a comprehensive theory, remain challenging due to the complex relationship between real materials and the parameters of the effective models. By combining cluster dynamical mean-field theory and density functional theory in a charge-self-consistent manner, here we show that the goal of material-specific predictions for high-temperature superconductors from first principles is within reach. To demonstrate the capabilities of our approach, we take on the challenge of explaining the remarkable physics of multilayer cuprates by focusing on the two representative Ca ( 1 + n ) Cu n O 2 n Cl 2 and HgBa 2 Ca ( n 1 ) Cu n O ( 2 n + 2 ) families. We shed light on the microscopic origin of many salient features of multilayer cuprates, in particular, the n dependence of their superconducting properties. The growth of T c from the single-layer to the trilayer compounds is here explained by the reduction of the charge transfer gap and, consequently, the growth of superexchange J as n increases. The origin of both is traced to the appearance of low-energy conduction bands reminiscent of standing wave modes confined within the stack of CuO 2 planes. We interpret the ultimate drop of T c for n 4 as a consequence of the inhomogeneous doping between the CuO 2 planes, which prevents the emergence of superconductivity in the inner planes due to their insufficient effective hole doping, as we also highlight the existence of a minimal doping (4%) required for superconductivity to appear in one of the planes. We explain material-specific properties such as the larger propensity of HgBa 2 Ca ( n 1 ) Cu n O ( 2 n + 2 ) to superconduct compared with Ca ( 1 + n ) Cu n O 2 n Cl 2 . We also find the coexistence of arcs and pockets observed with photoemission, the charge redistribution between copper and oxygen, and the link to the pseudogap. Our work establishes a framework for comprehensive studies of high-temperature superconducting cuprates, enables detailed comparisons with experiment, and, through its settings, unlocks opportunities for theoretical material design of high-temperature superconductors. Published by the American Physical Society2025 
    more » « less
  3. In bulk Sr 2 RuO 4 , the strong sensitivity of the superconducting transition temperature T c to nonmagnetic impurities provides robust evidence for a superconducting order parameter that changes sign around the Fermi surface. In superconducting epitaxial thin-film Sr 2 RuO 4 , the relationship between T c and the residual resistivity ρ 0 , which in bulk samples is taken to be a proxy for the low-temperature elastic scattering rate, is far less clear. Using high-energy electron irradiation to controllably introduce point disorder into bulk single-crystal and thin-film Sr 2 RuO 4 , we show that T c is suppressed in both systems at nearly identical rates. This suggests that part of ρ 0 in films comes from defects that do not contribute to superconducting pairbreaking and establishes a quantitative link between the superconductivity of bulk and thin-film samples. Published by the American Physical Society2024 
    more » « less
  4. This paper reports the first measurement of the transverse momentum ( p T ) spectra of primary charged pions, kaons, (anti)protons, and unidentified particles as a function of the charged-particle flattenicity in pp collisions at s = 13 TeV . Flattenicity is a novel event shape observable that is measured in the pseudorapidity intervals covered by the V0 detector, 2.8 < η < 5.1 and 3.7 < η < 1.7 . According to QCD-inspired phenomenological models, it shows sensitivity to multiparton interactions and is less affected by biases toward larger p T due to local multiplicity fluctuations in the V0 acceptance than multiplicity. The analysis is performed in minimum-bias (MB) as well as in high-multiplicity events up to p T = 20 GeV / c . The event selection requires at least one charged particle produced in the pseudorapidity interval | η | < 1 . The measured p T distributions, average p T , kaon-to-pion and proton-to-pion particle ratios, presented in this paper, are compared to model calculations using 8 based on color strings and EPOS LHC. The modification of the p T -spectral shapes in low-flattenicity events that have large event activity with respect to those measured in MB events develops a pronounced peak at intermediate p T ( 2 < p T < 8 GeV / c ), and approaches the vicinity of unity at higher p T . The results are qualitatively described by , and they show different behavior than those measured as a function of charged-particle multiplicity based on the V0M estimator. © 2025 CERN, for the ALICE Collaboration2025CERN 
    more » « less
  5. Understanding electronic interactions in high-temperature superconductors is an outstanding challenge. In the widely studied cuprate materials, experimental evidence points to strong electron-phonon ( e -ph) coupling and broad photoemission spectra. Yet, the microscopic origin of this behavior is not fully understood. Here, we study e -ph interactions and polarons in a prototypical parent (undoped) cuprate, La 2 CuO 4 (LCO), by means of first-principles calculations. Leveraging parameter-free Hubbard-corrected density functional theory, we obtain a ground state with the band gap and Cu magnetic moment in nearly exact agreement with experiments. This enables a quantitative characterization of e -ph interactions. Our calculations reveal two classes of longitudinal optical (LO) phonons with strong e -ph coupling to hole states. These modes consist of bond stretching and bond bending in the Cu-O plane as well as vibrations of apical O atoms. The hole spectral functions, obtained with a cumulant method that can capture strong e -ph coupling, exhibit broad quasiparticle peaks with a small spectral weight ( Z 0.25 ) and pronounced LO-phonon sidebands characteristic of polaron effects. Our calculations predict features observed in photoemission spectra, including a 40-meV peak in the e -ph coupling distribution function not explained by existing models. These results show that the universal strong e -ph coupling found experimentally in doped lanthanum cuprates is also present in the parent compound, and elucidate its microscopic origin. 
    more » « less