skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Controllable suppression of the unconventional superconductivity in bulk and thin-film Sr2RuO4 via high-energy electron irradiation
In bulk Sr 2 RuO 4 , the strong sensitivity of the superconducting transition temperature T c to nonmagnetic impurities provides robust evidence for a superconducting order parameter that changes sign around the Fermi surface. In superconducting epitaxial thin-film Sr 2 RuO 4 , the relationship between T c and the residual resistivity ρ 0 , which in bulk samples is taken to be a proxy for the low-temperature elastic scattering rate, is far less clear. Using high-energy electron irradiation to controllably introduce point disorder into bulk single-crystal and thin-film Sr 2 RuO 4 , we show that T c is suppressed in both systems at nearly identical rates. This suggests that part of ρ 0 in films comes from defects that do not contribute to superconducting pairbreaking and establishes a quantitative link between the superconductivity of bulk and thin-film samples. Published by the American Physical Society2024  more » « less
Award ID(s):
2104427 2039380
PAR ID:
10568202
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Physical Review
Date Published:
Journal Name:
Physical Review Research
Volume:
6
Issue:
3
ISSN:
2643-1564
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ever since the discovery of the charge density wave (CDW) transition in the kagome metal CsV 3 Sb 5 , the nature of its symmetry breaking has been under intense debate. While evidence suggests that the rotational symmetry is already broken at the CDW transition temperature ( T CDW ), an additional electronic nematic instability well below T CDW has been reported based on the diverging elastoresistivity coefficient in the anisotropic channel ( m E 2 g ). Verifying the existence of a nematic transition below T CDW is not only critical for establishing the correct description of the CDW order parameter, but also important for understanding low-temperature superconductivity. Here, we report elastoresistivity measurements of CsV 3 Sb 5 using three different techniques probing both isotropic and anisotropic symmetry channels. Contrary to previous reports, we find the anisotropic elastoresistivity coefficient m E 2 g is temperature independent, except for a step jump at T CDW . The absence of nematic fluctuations is further substantiated by measurements of the elastocaloric effect, which show no enhancement associated with nematic susceptibility. On the other hand, the symmetric elastoresistivity coefficient m A 1 g increases below T CDW , reaching a peak value of 90 at T * = 20 K . Our results strongly indicate that the phase transition at T * is not nematic in nature and the previously reported diverging elastoresistivity is due to the contamination from the A 1 g channel. Published by the American Physical Society2024 
    more » « less
  2. The ALICE Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets recoiling from a high transverse momentum (high p T ) hadron trigger in proton-proton and central Pb-Pb collisions at s NN = 5.02 TeV . A data-driven statistical method is used to mitigate the large uncorrelated background in central Pb-Pb collisions. Recoil jet distributions are reported for jet resolution parameter R = 0.2 , 0.4, and 0.5 in the range 7 < p T , jet < 140 GeV / c and trigger-recoil jet azimuthal separation π / 2 < Δ φ < π . The measurements exhibit a marked medium-induced jet yield enhancement at low p T and at large azimuthal deviation from Δ φ π . The enhancement is characterized by its dependence on Δ φ , which has a slope that differs from zero by 4.7 σ . Comparisons to model calculations incorporating different formulations of jet quenching are reported. These comparisons indicate that the observed yield enhancement arises from the response of the QGP medium to jet propagation. © 2024 CERN, for the ALICE Collaboration2024CERN 
    more » « less
  3. This Letter presents the most precise measurement to date of the matter-antimatter imbalance at midrapidity in Pb-Pb collisions at a center-of-mass energy per nucleon pair s NN = 5.02 TeV . Using the Statistical Hadronization framework, it is possible to obtain the value of the electric charge and baryon chemical potentials, μ Q = 0.18 ± 0.90 MeV and μ B = 0.71 ± 0.45 MeV , with unprecedented precision. A centrality-differential study of the antiparticle-to-particle yield ratios of charged pions, protons, Ω baryons, and light (hyper)nuclei is performed. These results indicate that the system created in Pb-Pb collisions at the LHC is on average baryon-free and electrically neutral at midrapidity. © 2024 CERN, for the ALICE Collaboration2024CERN 
    more » « less
  4. FeTe 0.55 Se 0.45 (FTS) occupies a special spot in modern condensed matter physics at the intersections of electron correlation, topology, and unconventional superconductivity. The bulk electronic structure of FTS is predicted to be topologically nontrivial due to the band inversion between the d x z and p z bands along Γ Z . However, there remain debates in both the authenticity of the Dirac surface states (DSSs) and the experimental deviations of band structure from the theoretical band inversion picture. Here we resolve these debates through a comprehensive angle-resolved photoemission spectroscopy investigation. We first observe a persistent DSS independent of k z . Then, by comparing FTS with FeSe, which has no band inversion along Γ Z , we identify the spectral weight fingerprint of both the presence of the p z band and the inversion between the d x z and p z bands. Furthermore, we propose a renormalization scheme for the band structure under the framework of a tight-binding model preserving crystal symmetry. Our results highlight the significant influence of correlation on modifying the band structure and make a strong case for the existence of topological band structure in this unconventional superconductor. Published by the American Physical Society2024 
    more » « less
  5. The superconducting state of the heavy-fermion metal UTe 2 has attracted considerable interest because of evidence of spin-triplet Cooper pairing and nontrivial topology. Progress on these questions requires identifying the presence or absence of nodes in the superconducting gap function and their dimension. In this article, we report a comprehensive study of the influence of disorder on the thermal transport in the superconducting state of UTe 2 . Through detailed measurements of the magnetic-field dependence of the thermal conductivity in the zero-temperature limit, we obtain clear evidence of the presence of point nodes in the superconducting gap for all samples with transition temperatures ranging from 1.6 to 2.1 K obtained by different synthesis methods, including a refined self-flux method. This robustness implies the presence of symmetry-imposed nodes throughout the range studied, further confirmed via disorder-dependent calculations of the thermal transport in a model with a single pair of nodes. In addition to capturing the temperature dependence of the thermal conductivity up to T c , this model provides some information about the locations of the nodes, suggesting a B 1 u or B 2 u symmetry for the superconducting order parameter. Additionally, comparing the new, ultrahigh conductivity samples to older samples reveals a crossover between a low-field and a high-field regime at a single value of the magnetic field in all samples. In the high-field regime, the thermal conductivity at different disorder levels differs from each other by a simple offset, suggesting that some simple principle determines the physics of the mixed state, a fact which may illuminate trends observed in other clean nodal superconductors. Published by the American Physical Society2025 
    more » « less