skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Lidar and Radar Meteorology Science Gateway for Education and Research on the NSF Jetstream2 Cloud
This paper introduces a lidar and radar meteorology science gateway deployed on the NSF Jetstream2 cloud, designed to enhance educational and research activities in atmospheric science. Utilizing the "Zero to JupyterHub with Kubernetes" workflow, we have created a science gateway that integrates lidar and radar meteorology software packages, notably the Lidar Radar Open Software Environment (LROSE). This integration allows users to execute applications directly from the JupyterLab terminal, streamlining the creation of datasets for further anal- ysis and visualization within Jupyter notebooks. By combining traditional command-line operations with modern Python-based tools for data analysis and visualization, this gateway provides a robust end-to-end solution that caters to both educational and research needs. The gateway has already been vital in facilitating LROSE instructional workshops and will see future enhancements such as GPU acceleration to boost performance. Our work demonstrates the significant potential of merging established scientific computing techniques with advanced Python environments, opening new avenues for computational science education and research.  more » « less
Award ID(s):
2103776
PAR ID:
10649166
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Zenodo
Date Published:
Subject(s) / Keyword(s):
LROSE Cloud-based Science Gateway Radar Meteorology Lidar Meteorology Data Visualization Educational Technology in Atmospheric Science JupyterHub NSF Jetstream2 Atmospheric Data Analysis
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To improve accessibility and community knowledge of applications in the Lidar Radar Open Software Environment (LROSE), a team from the National Science Foundation (NSF) National Center for Atmospheric Research, Colorado State University, and NSF Unidata has developed a lidar and radar meteorology science gateway deployed on the NSF Jetstream2 cloud. Utilizing the “Zero to JupyterHub with Kubernetes” workflow, the science gateway integrates LROSE with other lidar and radar meteorology software packages. This integration allows users to execute applications directly from the JupyterLab terminal, streamlining the creation of datasets for further analysis and visualization within Jupyter notebooks. By combining traditional command-line operations with modern Python-based tools for data analysis and visualization, this gateway provides a robust end-to-end solution that caters to both educational and research needs. The gateway has already facilitated LROSE instructional workshops and classroom exercises. Our work demonstrates the significant potential of merging established scientific computing techniques with advanced Python environments, opening new avenues for computational science education and research. The LROSE team has acquired successive allocations on the NSF Jetstream2 cloud at Indiana University through ACCESS. To develop the LROSE Science Gateway, we employed the “Zero to JupyterHub with Kubernetes” workflow ported to the NSF Jetstream2 cloud, enabling rapid and scalable deployment to accommodate a variable number of users. Authentication is managed through either GitHub OAuth or temporary credentials, depending on the situation. Since LROSE is a collection of C/C++ applications, we configured Docker containers based on the Jupyter Docker Stack to integrate the LROSE software, available via the JupyterLab terminal. These containers also include Conda package manager environments equipped with Python packages like Py-ART, CSU RadarTools, and Metpy for further data analysis. A shared drive accessible to all participants contains instructional datasets for lidar and radar data analysis. Tutorials take the form of Jupyter notebooks for use by individuals, in classroom exercises, or at instructional workshops. Some tutorials are complete with pre-loaded examples to quickly visualize workflows and results. Other tutorials guide students how to run the applications independently. All tutorials are hosted on the LROSE Science Gateway GitHub repository, which is open to contributions from colleagues and community members. Future plans include an "intermediate" level workshop on SAMURAI, one of the multi-Doppler wind applications of the LROSE suite. Additionally, work is currently underway to run GUI applications in the same browser-based JupyterLab environment. GUI applications for radar and lidar data visualization utilize the QT framework and present unique technical challenges. The techniques to accomplish GUI access have immediate applications for other GUI programs, such as NSF Unidata's IDV and their version of the AWIPS CAVE data visualization tools. Lastly, as demand for the resources found on the gateway increases, it becomes increasingly important to efficiently manage the Jetstream2 resources allocated by the ACCESS program. LROSE, NSF Unidata, San Diego Supercomputing Center (SDSC), and Indiana University staff are working together to deploy and evaluate Kubernetes cluster auto-scaling. With auto-scaling, resources will no longer sit idle while awaiting new logins and will instead be provisioned on-demand. 
    more » « less
  2. Neuroscientists are increasingly relying on parallel and distributed computing resources for analysis and visualization of their neuron simulations. This requires expert knowledge of programming and cyberinfrastructure configuration, which is beyond the repertoire of most neuroscience programs. This paper presents early experiences from a one-credit graduate research training course titled ECE 8001 “Software and Cyber Automation in Neuroscience” at the University of Missouri for engendering multi-disciplinary collaborations between computational neuroscience and cyberinfrastructure students and faculty. Specifically, we discuss the course organization and exemplar outcomes involving a next-generation science gateway for training novice users on exemplar neuroscience use cases that involve using tools such as NEURON and MATLAB on local as well as Neuroscience Gateway resources. We also discuss our vision towards a course sequence curriculum for graduate/undergraduate students from biological/psychological sciences and computer science/engineering to jointly build “self- service” training modules using Jupyter Notebook platforms. Thus, our efforts show how we can create scalable and sustainable cyber and software automation for fulfilling a broad set of neuroscience research and education use cases. 
    more » « less
  3. . Granting agencies invest millions of dollars on the generation and analysis of data, making these products extremely valuable. However, without sufficient annotation of the methods used to collect and analyze the data, the ability to reproduce and reuse those products suffers. This lack of assurance of the quality and credibility of the data at the different stages in the research process essentially wastes much of the investment of time and funding and fails to drive research forward to the level of potential possible if everything was effectively annotated and disseminated to the wider research community. In order to address this issue for the Hawai'i Established Program to Stimulate Competitive Research (EPSCoR) project, a water science gateway was developed at the University of Hawai‘i (UH), called the ‘Ike Wai Gateway. In Hawaiian, ‘Ike means knowledge and Wai means water. The gateway supports research in hydrology and water management by providing tools to address questions of water sustainability in Hawai‘i. The gateway provides a framework for data acquisition, analysis, model integration, and display of data products. The gateway is intended to complement and integrate with the capabilities of the Consortium of Universities for the Advancement of Hydrologic Science's (CUAHSI) Hydroshare by providing sound data and metadata management capabilities for multi-domain field observations, analytical lab actions, and modeling outputs. Functionality provided by the gateway is supported by a subset of the CUAHSI’s Observations Data Model (ODM) delivered as centralized web based user interfaces and APIs supporting multi-domain data management, computation, analysis, and visualization tools to support reproducible science, modeling, data discovery, and decision support for the Hawai'i EPSCoR ‘Ike Wai research team and wider Hawai‘i hydrology community. By leveraging the Tapis platform, UH has constructed a gateway that ties data and advanced computing resources together to support diverse research domains including microbiology, geochemistry, geophysics, economics, and humanities, coupled with computational and modeling workflows delivered in a user friendly web interface with workflows for effectively annotating the project data and products. Disseminating results for the ‘Ike Wai project through the ‘Ike Wai data gateway and Hydroshare makes the research products accessible and reusable. 
    more » « less
  4. The evolving focus in statistics and data science education highlights the growing importance of computing. This paper presents the Data Jamboree, a live event that combines computational methods with traditional statistical techniques to address real-world data science problems. Participants, ranging from novices to experienced users, followed workshop leaders in using open-source tools like Julia, Python, and R to perform tasks such as data cleaning, manipulation, and predictive modeling. The Jamboree showcased the educational benefits of working with open data, providing participants with practical, hands-on experience. We compared the tools in terms of efficiency, flexibility, and statistical power, with Julia excelling in performance, Python in versatility, and R in statistical analysis and visualization. The paper concludes with recommendations for designing similar events to encourage collaborative learning and critical thinking in data science. 
    more » « less
  5. Hedden, Abigail S.; Mazzaro, Gregory J.; Raynal, Ann Marie (Ed.)
    Research into autonomous vehicles has focused on purpose-built vehicles with Lidar, camera, and radar systems. Many vehicles on the road today have sensors built into them to provide advanced driver assistance systems. In this paper we assess the ability of low-end automotive radar coupled with lightweight algorithms to perform scene segmentation. Results from a variety of scenes demonstrate the viability of this approach that complement existing autonomous driving systems. 
    more » « less