skip to main content

Title: Scientific Data Annotation and Dissemination: Using the ‘Ike Wai Gatewayto Manage Research Data
. Granting agencies invest millions of dollars on the generation and analysis of data, making these products extremely valuable. However, without sufficient annotation of the methods used to collect and analyze the data, the ability to reproduce and reuse those products suffers. This lack of assurance of the quality and credibility of the data at the different stages in the research process essentially wastes much of the investment of time and funding and fails to drive research forward to the level of potential possible if everything was effectively annotated and disseminated to the wider research community. In order to address this issue for the Hawai'i Established Program to Stimulate Competitive Research (EPSCoR) project, a water science gateway was developed at the University of Hawai‘i (UH), called the ‘Ike Wai Gateway. In Hawaiian, ‘Ike means knowledge and Wai means water. The gateway supports research in hydrology and water management by providing tools to address questions of water sustainability in Hawai‘i. The gateway provides a framework for data acquisition, analysis, model integration, and display of data products. The gateway is intended to complement and integrate with the capabilities of the Consortium of Universities for the Advancement of Hydrologic Science's (CUAHSI) Hydroshare by more » providing sound data and metadata management capabilities for multi-domain field observations, analytical lab actions, and modeling outputs. Functionality provided by the gateway is supported by a subset of the CUAHSI’s Observations Data Model (ODM) delivered as centralized web based user interfaces and APIs supporting multi-domain data management, computation, analysis, and visualization tools to support reproducible science, modeling, data discovery, and decision support for the Hawai'i EPSCoR ‘Ike Wai research team and wider Hawai‘i hydrology community. By leveraging the Tapis platform, UH has constructed a gateway that ties data and advanced computing resources together to support diverse research domains including microbiology, geochemistry, geophysics, economics, and humanities, coupled with computational and modeling workflows delivered in a user friendly web interface with workflows for effectively annotating the project data and products. Disseminating results for the ‘Ike Wai project through the ‘Ike Wai data gateway and Hydroshare makes the research products accessible and reusable. « less
Authors:
;
Award ID(s):
1931575
Publication Date:
NSF-PAR ID:
10171519
Journal Name:
Practice and Experience in Advanced Research Computing
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper discusses the design and implementation of the Hawai‘i Rainfall Analysis and Mapping Application (HI-RAMA) decision support tool. HI-RAMA provides researchers and community stakeholders interactive access to and visualization of hosted historical and near-real-time monthly rainfall maps and aggregated rainfall station observational data for the State of Hawai‘i. The University of Hawai‘i Information Technology Services Cyberinfrastructure team in partnership with members of the Hawai‘i Established Program to Stimulate Competitive Research (EPSCoR) ‘Ike Wai project team developed this application as part of the ‘Ike Wai Gateway to support water sustainability research for the state of Hawai‘i. This tool is designed to provide user-friendly access to information that can reveal the impacts of climate changes related to precipitation so users can make data-driven decisions.
  2. The first major goal of this project is to build a state-of-the-art information storage, retrieval, and analysis system that utilizes the latest technology and industry methods. This system is leveraged to accomplish another major goal, supporting modern search and browse capabilities for a large collection of tweets from the Twitter social media platform, web pages, and electronic theses and dissertations (ETDs). The backbone of the information system is a Docker container cluster running with Rancher and Kubernetes. Information retrieval and visualization is accomplished with containers in a pipelined fashion, whether in the cluster or on virtual machines, for Elasticsearch and Kibana, respectively. In addition to traditional searching and browsing, the system supports full-text and metadata searching. Search results include facets as a modern means of browsing among related documents. The system supports text analysis and machine learning to reveal new properties of collection data. These new properties assist in the generation of available facets. Recommendations are also presented with search results based on associations among documents and with logged user activity. The information system is co-designed by five teams of Virginia Tech graduate students, all members of the same computer science class, CS 5604. Although the project is an academicmore »exercise, it is the practice of the teams to work and interact as though they are groups within a company developing a product. The teams on this project include three collection management groups -- Electronic Theses and Dissertations (ETD), Tweets (TWT), and Web-Pages (WP) -- as well as the Front-end (FE) group and the Integration (INT) group to help provide the overarching structure for the application. This submission focuses on the work of the Integration (INT) team, which creates and administers Docker containers for each team in addition to administering the cluster infrastructure. Each container is a customized application environment that is specific to the needs of the corresponding team. Each team will have several of these containers set up in a pipeline formation to allow scaling and extension of the current system. The INT team also contributes to a cross-team effort for exploring the use of Elasticsearch and its internally associated database. The INT team administers the integration of the Ceph data storage system into the CS Department Cloud and provides support for interactions between containers and the Ceph filesystem. During formative stages of development, the INT team also has a role in guiding team evaluations of prospective container components and workflows. The INT team is responsible for the overall project architecture and facilitating the tools and tutorials that assist the other teams in deploying containers in a development environment according to mutual specifications agreed upon with each team. The INT team maintains the status of the Kubernetes cluster, deploying new containers and pods as needed by the collection management teams as they expand their workflows. This team is responsible for utilizing a continuous integration process to update existing containers. During the development stage the INT team collaborates specifically with the collection management teams to create the pipeline for the ingestion and processing of new collection documents, crossing services between those teams as needed. The INT team develops a reasoner engine to construct workflows with information goal as input, which are then programmatically authored, scheduled, and monitored using Apache Airflow. The INT team is responsible for the flow, management, and logging of system performance data and making any adjustments necessary based on the analysis of testing results. The INT team has established a Gitlab repository for archival code related to the entire project and has provided the other groups with the documentation to deposit their code in the repository. This repository will be expanded using Gitlab CI in order to provide continuous integration and testing once it is available. Finally, the INT team will provide a production distribution that includes all embedded Docker containers and sub-embedded Git source code repositories. The INT team will archive this distribution on the Virginia Tech Docker Container Registry and deploy it on the Virginia Tech CS Cloud. The INT-2020 team owes a sincere debt of gratitude to the work of the INT-2019 team. This is a very large undertaking and the wrangling of all of the products and processes would not have been possible without their guidance in both direct and written form. We have relied heavily on the foundation they and their predecessors have provided for us. We continue their work with systematic improvements, but also want to acknowledge their efforts Ibid. Without them, our progress to date would not have been possible.« less
  3. In collaboration with the Center for Microbiome Analysis through Island Knowledge and Investigations (C-MĀIKI), the Hawaii EPSCoR Ike Wai project and the Hawaii Data Science Institute, a new science gateway, the C-MĀIKI gateway, was developed to support modern, interoperable and scalable microbiome data analysis. This gateway provides a web-based interface for accessing high-performance computing resources and storage to enable and support reproducible microbiome data analysis. The C-MĀIKI gateway is accelerating the analysis of microbiome data for Hawaii through ease of use and centralized infrastructure.
  4. Workflow management systems (WMSs) are commonly used to organize/automate sequences of tasks as workflows to accelerate scientific discoveries. During complex workflow modeling, a local interactive workflow environment is desirable, as users usually rely on their rich, local environments for fast prototyping and refinements before they consider using more powerful computing resources. However, existing WMSs do not simultaneously support local interactive workflow environments and HPC resources. In this paper, we present an on-demand access mechanism to remote HPC resources from desktop/laptopbased workflow management software to compose, monitor and analyze scientific workflows in the CyberWater project. Cyber- Water is an open-data and open-modeling software framework for environmental and water communities. In this work, we extend the open-model, open-data design of CyberWater with on-demand HPC accessing capacity. In particular, we design and implement the LaunchAgent library, which can be integrated into the local desktop environment to allow on-demand usage of remote resources for hydrology-related workflows. LaunchAgent manages authentication to remote resources, prepares the computationally-intensive or data-intensive tasks as batch jobs, submits jobs to remote resources, and monitors the quality of services for the users. LaunchAgent interacts seamlessly with other existing components in CyberWater, which is now able to provide advantages of both feature-richmore »desktop software experience and increased computation power through on-demand HPC/Cloud usage. In our evaluations, we demonstrate how a hydrology workflow that consists of both local and remote tasks can be constructed and show that the added on-demand HPC/Cloud usage helps speeding up hydrology workflows while allowing intuitive workflow configurations and execution using a desktop graphical user interface.« less
  5. Large scientific facilities are unique and complex infrastructures that have become fundamental instruments for enabling high quality, world-leading research to tackle scientific problems at unprecedented scales. Cyberinfrastructure (CI) is an essential component of these facilities, providing the user community with access to data, data products, and services with the potential to transform data into knowledge. However, the timely evolution of the CI available at large facilities is challenging and can result in science communities requirements not being fully satisfied. Furthermore, integrating CI across multiple facilities as part of a scientific workflow is hard, resulting in data silos. In this paper, we explore how science gateways can provide improved user experiences and services that may not be offered at large facility datacenters. Using a science gateway supported by the Science Gateway Community Institute, which provides subscription-based delivery of streamed data and data products from the NSF Ocean Observatories Initiative (OOI), we propose a system that enables streaming-based capabilities and workflows using data from large facilities, such as the OOI, in a scalable manner. We leverage data infrastructure building blocks, such as the Virtual Data Collaboratory, which provides data and comput- ing capabilities in the continuum to efficiently and collaboratively integrate multiplemore »data-centric CIs, build data-driven workflows, and connect large facilities data sources with NSF-funded CI, such as XSEDE. We also introduce architectural solutions for running these workflows using dynamically provisioned federated CI.« less