skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: The aluminium-26 distribution in a cosmological simulation of a Milky Way-type Galaxy
Context. The 1.8 MeVγ-rays corresponding to the decay of the radioactive isotope26Al (with a half-life of 0.72 Myr ) have been observed by the SPI detector on the INTEGRAL spacecraft and extensively used as a tracer of star formation and current nucleosynthetic activity in the Milky Way Galaxy. Further information is encoded in the observation related to the higher26Al content found in regions of the Galaxy with the highest line-of-sight (LoS) velocity relative to an observer located in the Solar System. However, this feature remains unexplained. Aims. We ran a cosmological “zoom-in” chemodynamical simulation of a Milky Way-type galaxy, including the production and decays of radioactive nuclei in a fully self-consistent way. We then analyzed the results to follow the evolution of26Al throughout the lifetime of the simulated galaxy to provide a new method for interpreting the26Al observations. Methods. We included the massive star sources of26Al in the Galaxy and its radioactive decay into a state-of-the-art galactic chemical evolution model, coupled with cosmological growth and hydrodynamics. This approach allowed us to follow the spatial and temporal evolution of the26Al content in the simulated galaxy. Results. Our results are in agreement with the observations with respect to the fact that gas particles in the simulation with relatively higher26Al content also have the highest LoS velocities. On the other hand, gas particles with relatively lower26Al content (i.e., not bright enough to be observed) generally display the lowest LoS velocities. However, this result is not conclusive because the overall rotational velocity of our simulated galaxy is higher than that observed for cold CO gas in the Milky Way Galaxy. Furthermore, we found no significant correlation between gas temperature, rotational velocity, and26Al content at any given radius. We also found the presence of transient26Al-rich spots at low LoS velocities and we show that one such spot had been captured by the INTEGRAL/SPI data. Based on our model, we present a prediction for the detection of 1.8 MeVγ-rays by the future COSI mission. We find that according to our model, the new instrument will be able to observe similar26Al-emission patterns to those seen by INTEGRAL/SPI.  more » « less
Award ID(s):
1927130
PAR ID:
10649196
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
EDP Sciences
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
695
ISSN:
0004-6361
Page Range / eLocation ID:
A190
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context. The 26 Al short-lived radioactive nuclide is the source of the observed galactic diffuse γ -ray emission at 1.8 MeV. While different sources of 26 Al have been explored, such as asymptotic giant branch stars, massive stellar winds, and supernovae, the contribution of very massive stars has not been studied so far. Aims. We study the contribution of the stellar wind of very massive stars, here, stars with initial masses between 150 and 300 M ⊙ , to the enrichment in 26 Al of the galactic interstellar medium. Methods. We studied the production of 26 Al by studying rotating and non-rotating very massive stellar models with initial masses between 150 and 300 M ⊙ for metallicities Z  = 0.006, 0.014, and 0.020. We compared this result to a simple Milky Way model and took the metallicity and the star formation rate gradients into account. Results. We obtain that very massive stars in the Z  = 0.006 − 0.020 metallicity range might be very significant contributors to the 26 Al enrichment of the interstellar medium. Typically, the contribution of the winds of massive stars to the total quantity of 26 Al in the Galaxy increases by 150% when very massive stars are considered. Conclusions. Despite their rarity, very massive stars might be important contributors to 26 Al and might overall be very important actors for nucleosynthesis in the Galaxy. 
    more » « less
  2. Abstract We use hydrodynamical simulations of two Milky Way–mass galaxies to demonstrate the impact of cosmic-ray pressure on the kinematics of cool and warm circumgalactic gas. Consistent with previous studies, we find that cosmic-ray pressure can dominate over thermal pressure in the inner 50 kpc of the circumgalactic medium (CGM), creating an overall cooler CGM than that of similar galaxy simulations run without cosmic rays. We generate synthetic sight lines of the simulated galaxies’ CGM and use Voigt profile-fitting methods to extract ion column densities, Doppler-bparameters, and velocity centroids of individual absorbers. We directly compare these synthetic spectral line fits with HST/COS CGM absorption-line data analyses, which tend to show that metallic species with a wide range of ionization potential energies are often kinematically aligned. Compared to the Milky Way simulation run without cosmic rays, the presence of cosmic-ray pressure in the inner CGM creates narrower Oviabsorption features and broader Siiiiabsorption features, a quality that is more consistent with observational data. Additionally, because the cool gas is buoyant due to nonthermal cosmic-ray pressure support, the velocity centroids of both cool and warm gas tend to align in the simulated Milky Way with feedback from cosmic rays. Our study demonstrates that detailed, direct comparisons between simulations and observations, focused on gas kinematics, have the potential to reveal the dominant physical mechanisms that shape the CGM. 
    more » « less
  3. We use hydrodynamical simulations of two Milky Way-mass galaxies to demonstrate the impact of cosmic-ray pressure on the kinematics of cool and warm circumgalactic gas. Consistent with previous studies, we find that cosmic-ray pressure can dominate over thermal pressure in the inner 50 kpc of the circumgalactic medium (CGM), creating an overall cooler CGM than that of similar galaxy simulations run without cosmic rays. We generate synthetic sightlines of the simulated galaxies' CGM and use Voigt profile fitting methods to extract ion column densities, Doppler-b parameters, and velocity centroids of individual absorbers. We directly compare these synthetic spectral line fits with HST/COS CGM absorption-line data analyses, which tend to show that metallic species with a wide range of ionization potential energies are often kinematically aligned. Compared to the Milky-Way simulation run without cosmic rays, the presence of cosmic-ray pressure in the inner CGM creates narrower OVI absorption features and broader SiIII absorption features, a quality which is more consistent with observational data. Additionally, because the cool gas is buoyant due to nonthermal cosmic-ray pressure support, the velocity centroids of both cool and warm gas tend to align in the simulated Milky Way with feedback from cosmic rays. Our study demonstrates that detailed, direct comparisons between simulations and observations, focused on gas kinematics, have the potential to reveal the dominant physical mechanisms that shape the CGM. 
    more » « less
  4. Abstract The recently discovered stellar system Ursa Major III/UNIONS 1 (UMa3/U1) is the faintest known Milky Way satellite to date. With a stellar mass of 16 5 + 6 M and a half-light radius of 3 ± 1 pc, it is either the darkest galaxy ever discovered or the faintest self-gravitating star cluster known to orbit the Galaxy. Its line-of-sight velocity dispersion suggests the presence of dark matter, although current measurements are inconclusive because of the unknown contribution to the dispersion of potential binary stars. We useN-body simulations to show that, if self-gravitating, the system could not survive in the Milky Way tidal field for much longer than a single orbit (roughly 0.4 Gyr), which strongly suggests that the system is stabilized by the presence of large amounts of dark matter. If UMa3/U1 formed at the center of a ∼109Mcuspy LCDM halo, its velocity dispersion would be predicted to be of order ∼1 km s−1. This is roughly consistent with the current estimate, which, neglecting binaries, placesσlosin the range 1–4 km s−1. Because of its dense cusp, such a halo should be able to survive the Milky Way tidal field, keeping UMa3/U1 relatively unscathed until the present time. This implies that UMa3/U1 is plausibly the faintest and densest dwarf galaxy satellite of the Milky Way, with important implications for alternative dark matter models and for the minimum halo mass threshold for luminous galaxy formation in the LCDM cosmology. Our results call for multi-epoch high-resolution spectroscopic follow-up to confirm the dark matter content of this extraordinary system. 
    more » « less
  5. Abstract The origin of heavy elements synthesized through the rapid neutron capture process (r-process) has been an enduring mystery for over half a century. J. Cehula et al. recently showed that magnetar giant flares, among the brightest transients ever observed, can shock heat and eject neutron star crustal material at high velocity, achieving the requisite conditions for anr-process. A. Patel et al. confirmed anr-process in these ejecta using detailed nucleosynthesis calculations. Radioactive decay of the freshly synthesized nuclei releases a forest of gamma-ray lines, Doppler broadened by the high ejecta velocitiesv ≳ 0.1cinto a quasi-continuous spectrum peaking around 1 MeV. Here, we show that the predicted emission properties (light curve, fluence, and spectrum) match a previously unexplained hard gamma-ray signal seen in the aftermath of the famous 2004 December giant flare from the magnetar SGR 1806–20. This MeV emission component, rising to peak around 10 minutes after the initial spike before decaying away over the next few hours, is direct observational evidence for the synthesis of ∼10−6Mofr-process elements. The discovery of magnetar giant flares as confirmedr-process sites, contributing at least ∼1%–10% of the total Galactic abundances, has implications for the Galactic chemical evolution, especially at the earliest epochs probed by low-metallicity stars. It also implicates magnetars as potentially dominant sources of heavy cosmic rays. Characterization of ther-process emission from giant flares by resolving decay line features offers a compelling science case for NASA’s forthcoming COSI nuclear spectrometer, as well as next-generation MeV telescope missions. 
    more » « less