Transmission switching is widely used in the electric power industry for both preventive and corrective purposes. Optimal transmission switching (OTS) problems are usually formulated based on optimal power flow (OPF) problems. OTS problems are originally nonlinear optimization problems with binary integer variables indicating whether a transmission line is in or out of service, however, they can be linearized into mixed-integer linear programs (MILP) through the big-M method. In such big-M-based MILP problems, the value of M can significantly affect their computational efficiency. This paper proposes a method to find the optimal big-M values for OTS problems and studies the impact of big-M values on the computational efficiency of OTS problems. The model was implemented on a modified RTS-96 test system, and the results show that the proposed model can effectively reduce the computational time by finding an optimal big-M value which ensures optimal switching solutions while maintaining numerical stability.
more »
« less
This content will become publicly available on November 1, 2026
AC-Informed DC Optimal Transmission Switching Problems via Parameter Optimization
Optimal Transmission Switching (OTS) problems minimize operational costs while treating both the transmission line energization statuses and generator setpoints as decision variables. The combination of nonlinearities from an AC power flow model and discrete variables associated with line statuses makes AC-OTS a computationally challenging Mixed-Integer Nonlinear Program (MINLP). To address these challenges, the DC power flow approximation is often used to obtain a DC-OTS formulation expressed as a Mixed-Integer Linear Program (MILP). However, this approximation often leads to suboptimal or infeasible switching decisions when evaluated with an AC power flow model. This paper proposes an enhanced DC-OTS formulation that leverages techniques for training machine learning models to optimize the DC power flow model's parameters. By optimally selecting parameter values that align flows in the DC power flow model with apparent power flows—incorporating both real and reactive components—from AC Optimal Power Flow (OPF) solutions, our method more accurately captures line congestion behavior. Integrating these optimized parameters into the DC-OTS formulation significantly improves the accuracy of switching decisions and reduces discrepancies between DC-OTS and AC-OTS solutions. We compare our optimized DC-OTS model against traditional OTS approaches, including DC-OTS, Linear Programming AC (LPAC)-OTS, and Quadratic Convex (QC)-OTS. Numeric results show that switching decisions from our model yield better performance when evaluated using an AC power flow model, with up to 44% cost reductions in some cases.
more »
« less
- Award ID(s):
- 2145564
- PAR ID:
- 10649361
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Power Systems
- Volume:
- 40
- Issue:
- 6
- ISSN:
- 0885-8950
- Page Range / eLocation ID:
- 5422 to 5433
- Subject(s) / Keyword(s):
- Optimal transmission switching (OTS), DC optimal power flow (DC-OPF), AC-OPF, parameter optimization.
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Optimal Power Shutoff (OPS) problem is an optimization problem that makes power line de-energization decisions in order to reduce the risk of igniting a wildfire, while minimizing the load shed of customers. This problem, with DC linear power flow equations, has been used in many studies in recent years. However, using linear approximations for power flow when making decisions on the network topology is known to cause challenges with AC feasibility of the resulting network, as studied in the related contexts of optimal transmission switching or grid restoration planning. This paper explores the accuracy of the DC OPS formulation and the ability to recover an AC-feasible power flow solution after de-energization decisions are made. We also extend the OPS problem to include variants with the AC, Second-Order-Cone, and Network-Flow power flow equations, and compare them to the DC approximation with respect to solution quality and time. The results highlight that the DC approximation overestimates the amount of load that can be served, leading to poor de-energization decisions. The AC and SOC-based formulations are better, but prohibitively slow to solve for even modestly sized networks thus demonstrating the need for new solution methods with better trade-offs between computational time and solution quality.more » « less
-
This paper presents an algorithm to optimize the parameters of power systems equivalents to enhance the accuracy of the DC power flow approximation in reduced networks. Based on a zonal division of the network, the algorithm produces a reduced power system equivalent that captures inter-zonal flows with aggregated buses and equivalent transmission lines. The algorithm refines coefficient and bias parameters for the DC power flow model of the reduced network, aiming to minimize discrepancies between inter-zonal flows in DC and AC power flow results. Using optimization methods like Broyden-Fletcher-Goldfarb-Shanno (BFGS), Limited-memory BFGS (L-BFGS), and Truncated Newton Conjugate-Gradient (TNC) in an offline training phase, these parameters boost the accuracy of online DC power flow computations. In contrast to existing network equivalencing methods, the proposed algorithm optimizes accuracy over a specified range of operation as opposed to only considering a single nominal point. Numerical tests demonstrate substantial accuracy improvements over traditional equivalencing and approximation methods.more » « less
-
To compute reliable and low-cost operating points, electric power system operators solve optimization problems that enforce inequality constraints such as limits on line flows, voltage magnitudes, and generator outputs. A common empirical observation regarding these constraints is that only a small fraction of them are binding (satisfied with equality) during operation. Furthermore, the same constraints tend to be binding across time periods. Recent research efforts have developed constraint screening algorithms that formalize this observation and allow for screening across operational conditions that are representative of longer time periods. These algorithms identify redundant constraints, i.e., constraints that can never be violated if other constraints are satisfied, by solving optimization problems for each constraint separately. This paper investigates how the choice of power flow formulation, represented either by the non-convex AC power flow, convex relaxations, or a linear DC approximation, impacts the results and the computational time of the screening method. This allows us to characterize the conservativeness of convex relaxations in constraint screening and assess the efficacy of the DC approximation in this context.more » « less
-
Optimization problems that involve topology opti- mization in scenarios with large scale outages, such as post- disaster restoration or public safety power shutoff planning, are very challenging to solve. Using simple power flow representa- tions such as DC power flow or network flow models results in low quality solutions which requires significantly higher- than-predicted load shed to become AC feasible. Recent work has shown that formulations based on the Second Order Cone (SOC) power flow formulation find very high quality solutions with low load shed, but the computational burden of these formulations remains a significant challenge. With the aim of reducing computational time while maintaining high solution quality, this work explores formulations which replace the conic constraints with a small number of linear cuts. The goal of this approach is not to find an exact power flow solution, but rather to identify good binary decisions, where the power flow can be resolved after the binary variables are fixed. We find that a simple reformulation of the Second Order Cone Optimal Power Shutoff problem can greatly improve the solution speed, but that a full linearization of the SOC voltage cone equation results in an overestimation of the amount of power that can be delivered to loads.more » « less
An official website of the United States government
