skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 27, 2026

Title: Zooming in to see the big picture: the value of integrative work to understand early stages of pollinator-mediated plant divergence. A commentary on ‘Geographical variation in flower colour of a food-deceptive orchid reflects local pollinator preferences’
Award ID(s):
2208984
PAR ID:
10649580
Author(s) / Creator(s):
;
Publisher / Repository:
University Oxford Press
Date Published:
Journal Name:
Annals of Botany
Volume:
136
Issue:
3
ISSN:
0305-7364
Page Range / eLocation ID:
i to iii
Subject(s) / Keyword(s):
floral trait evolution, divergence, early speciation, intraspecific floral trait variation, pollinator-mediated speciation, integrative evolutionary ecology
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The disposable soma theory posits that organisms allocate limited resources between reproduction, maintenance, and growth, resulting in trade-offs, particularly as they age. In this study, we examined age-related reproductive senescence in Megachile rotundata, a solitary bee and important agricultural pollinator. We hypothesized that, similarly to social bees, aging females would show declines in foraging behavior and reproductive fitness. Contrary to this hypothesis, we found no evidence of reproductive senescence in M. rotundata within the timeframe observed. Instead, older females increased their foraging rate, leading to larger provisions and offspring. We also observed that older bees exhibited improved foraging efficiency, likely due to learning and muscle physiology changes. Furthermore, ovarian development showed no decline with age, indicating that reproductive capacity remains stable throughout the observed timeframe. Our results challenge conventional assumptions about reproductive senescence in solitary bees and suggest that older M. rotundata may contribute to more efficient pollination, with implications for pollinator management. This study provides new insights into the aging process in solitary bees, emphasizing the need for further research into the mechanisms behind age-related behavioral and reproductive changes. 
    more » « less
  2. Facilitation is likely important for understanding community diversity dynamics, but its myriad potential mechanisms are under-investigated. Studies of pollinator-mediated facilitation in plants, for example, are typically focused on how co-flowering species facilitate each other's pollination within a season. However, pollinator-mediated facilitation could also arise in the form of inter-annual pollination support, where co-occurring plant populations mutually facilitate each other by providing dynamic stability to support a pollinator population through time. In this work, I test this hypothesis with simulation models of annual flowering plant and bee pollinator populations to determine if and how inter-annual pollination support affects the persistence and/or stability of simulated communities. Two-species plant communities persisted at higher rates than single-species communities, and facilitation was strongest in communities with low mean germination rates and highly species-specific responses to environmental variation. Single-species communities were often more stable than their counterparts, likely because of survivorship—persistent single-species communities were necessarily more stable through time to support pollinators. This work shows that competition and facilitation can simultaneously affect plant population dynamics. It also importantly identifies key features of annual plant communities that might exhibit inter-annual pollination support- those with low germination rates and species-specific responses to variation. 
    more » « less