skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pellet-Based XRD: A Simplified Approach to Phase Purity Determination in Solid-State Materials
Phase purity determination is an essential step in the characterization of solid-state materials, typically conducted through powder X-ray diffraction (XRD). However, the reparation of powder samples is often time-consuming, can lead to material wastage, and risks altering the structural properties of the sample. In this study, we present an alternative method that involves the direct use of pelletized samples for XRD analysis, bypassing the need for powdering. Our investigation, conducted on 2 series of compounds or 6 samples of oxygen-deficient perovskite oxides, demonstrates that diffraction patterns from pellet samples are sufficiently distinct to confirm phase purity, offering a faster, more efficient alternative to traditional powder XRD methods. This method not only reduces the time and effort involved in sample preparation but also preserves the material's structural and physicochemical integrity. By minimizing the mechanical manipulation and thermal exposure of the samples, the direct pellet method allows for subsequent property measurements—such as electrical conductivity, magnetic behavior, thermoelectric behavior, catalytic activity, and electrode performance—without risking sample degradation. Our results show that this approach provides reliable phase purity assessment while conserving materials, making it an attractive option for researchers working with oxygen-deficient perovskite oxides and other complex materials.  more » « less
Award ID(s):
1839895 2225648
PAR ID:
10649600
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
SCIREA
Date Published:
Journal Name:
SCIREA Journal of Chemistry
ISSN:
2995-6943
Subject(s) / Keyword(s):
XRD, solid-state reaction, perovskite oxides, oxygen deficiency
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The perovskite oxides CaMnO3-δ, Ca0.5Sr0.5MnO3-δ, and SrMnO3-δ were synthesized in air using a solid-state method, and their structural, electrical, and electrocatalytic properties were studied in relation to their oxygen evolution reaction (OER) performance. Iodometric titration showed δ values of 0.05, 0.05, and 0.0, respectively, indicating that Mn is predominantly in the 4+ oxidation state across all materials, consistent with prior reports. Detailed characterization was performed using X-ray diffraction (XRD), scanning electron microscopy (SEM), iodometric titration, and variable-temperature conductivity measurements. Four-point probe DC measurements revealed that CaMnO3-δ (δ = 0.05) has a semiconductive behavior over a temperature range from 25 °C to 300 °C, with its highest conductivity attributed to polaron activity. Cyclic voltammetry (CV) in 0.1 M KOH was employed to assess OER catalytic performance, which correlated with room-temperature conductivity. CaMnO3-δ exhibited superior catalytic activity, followed by Ca0.5Sr0.5MnO3-δ and SrMnO3-δ, demonstrating that increased conductivity enhances OER performance. The conductivity trend, CaMnO3-δ > Ca0.5Sr0.5MnO3-δ > SrMnO3-δ, aligns with OER activity, underscoring a direct link between electronic transport properties and catalytic efficiency within this series. 
    more » « less
  2. This paper investigates the optoelectronic properties of CsPbBr3, a lead-based perovskite, and Cs2AgBiBr6, a lead-free double perovskite, in composite thick films synthesized using mechanochemical and hot press methods, with poly(butyl methacrylate) as the matrix. Comprehensive characterization was conducted, including X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), UV–visible spectroscopy (UV–Vis), and photoluminescence (PL). Results indicate that the polymer matrix does not significantly impact the crystalline structure of the perovskites but has a direct impact on the grain size and surface area, enhancing the interfacial charge transfer of the composites. Optical characterization indicates minimal changes in bandgap energies across all different phases, with CsPbBr3 exhibiting higher photocurrent than Cs2AgBiBr6. This is attributed to the CsPbBr3 superior charge carrier mobility. Both composites showed photoconductive behavior, with Cs2AgBiBr6 also demonstrating higher-energy (X-ray) photon detection. These findings highlight the potential of both materials for advanced photodetector applications, with Cs2AgBiBr6 offering an environmentally Pb-free alternative. 
    more » « less
  3. unknown (Ed.)
    This study introduces a novel oxygen-deficient perovskite, Sr2Fe0.75Co0.75Mn0.5O6-δ, synthesized through a solid-state reaction and thoroughly characterized by Powder XRD, SEM and direct current (DC) electrical conductivity measurements. The material, exhibiting a cubic crystal structure with the Pm3̅m space group, demonstrates intriguing electrical properties. At temperatures ranging from 25 to 400 °C, the material displays semiconductor-type conductivity, transitioning seamlessly to metallic-type conductivity from 400 to 800 °C. The deliberate incorporation of cobalt into the perovskite structure is found to be pivotal, as evidenced by a comparative analysis with its parent compound, Sr2FeMnO6-δ. This investigation reveals a substantial improvement in electrical conductivity, underscoring the significance of the partial substitution of cobalt. The tailored electrical properties of Sr2Fe0.75Co0.75Mn0.5O6-δ position it as a versatile candidate for electronic applications. 
    more » « less
  4. Due to the growing number of people infected with the new coronavirus globally, which weakens immunity, there has been an increase in bacterial infections. Hence, knowledge about simple and low-cost synthesis methods of materials with good structural and antimicrobial properties is of great importance. A material obtained through the combination of a nanoscale hydroxyapatite material (with good biocompatibility) and titanium dioxide (with good degradation properties of organic molecules) can absorb and decompose bacteria. In this investigation, three different synthesis routes used to prepare hydroxyapatite/titanium dioxide nanomaterials are examined. The morphology and semiquantitative chemical composition are characterized by scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX). The obtained materials’ phase and structural characterization are determined using the X-ray powder diffraction method (XRD). The crystallite sizes of the obtained materials are in the range of 8 nm to 15 nm. Based on XRD peak positions, the hexagonal hydroxyapatite phases are formed in all samples along with TiO2 anatase and rutile phases. According to SEM and TEM analyses, the morphology of the prepared samples differs depending on the synthesis route. The EDX analysis confirmed the presence of Ti, Ca, P, and O in the obtained materials. The IR spectroscopy verified the vibration bands characteristic for HAp and titanium. The investigated materials show excellent antimicrobial and photocatalytic properties. 
    more » « less
  5. The stabilization of the B-site oxidation state in ABO 3 perovskites using wet-chemical methods is a synthetic challenge, which is of fundamental and practical interest for energy storage and conversion devices. In this work, defect-controlled (Sr-deficiency and oxygen vacancies) strontium niobium( iv ) oxide (Sr 1−x NbO 3−δ , SNO) metal oxide nanoparticles (NPs) were synthesized for the first time using a low-pressure wet-chemistry synthesis. The experiments were performed under reduced oxygen partial pressure to prevent by-product formation and with varying Sr/Nb molar ratio to favor the formation of Nb 4+ pervoskites. At a critical Sr to Nb ratio (Sr/Nb = 1.3), a phase transition is observed forming an oxygen-deficient SrNbO 3 phase. Structural refinement on the resultant diffraction pattern shows that the SNO NPs consists of a near equal mixture of SrNbO 3 and Sr 0.7 NbO 3−δ crystal phases. A combination of Rietveld refinement and X-ray photoelectron spectroscopy (XPS) confirmed the stabilization of the +4 oxidation state and the formation of oxygen vacancies. The Nb local site symmetry was extracted through Raman spectroscopy and modeled using DFT. As further confirmation, the particles demonstrate the expected absorption highlighting their restored optoelectronic properties. This low-pressure wet-chemical approach for stabilizing the oxidation state of a transition metal has the potential to be extended to other oxygen sensitive, low dimensional perovskite oxides with unique properties. 
    more » « less