skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 24, 2026

Title: X -Sample Contrastive Loss: Improving Contrastive Learning with Sample Similarity Graphs
Learning good representations involves capturing the diverse ways in which data samples relate. Contrastive loss - an objective matching related samples - underlies methods from self-supervised to multimodal learning. Contrastive losses, however, can be viewed more broadly as modifying a similarity graph to indicate how samples should relate in the embedding space. This view reveals a shortcoming in contrastive learning: the similarity graph is binary, as only one sample is the related positive sample. Crucially, similarities \textit{across} samples are ignored. Based on this observation, we revise the standard contrastive loss to explicitly encode how a sample relates to others. We experiment with this new objective, called X -Sample Contrastive, to train vision models based on similarities in class or text caption descriptions. Our study spans three scales: ImageNet-1k with 1 million, CC3M with 3 million, and CC12M with 12 million samples. The representations learned via our objective outperform both contrastive self-supervised and vision-language models trained on the same data across a range of tasks. When training on CC12M, we outperform CLIP by on both ImageNet and ImageNet Real. Our objective appears to work particularly well in lower-data regimes, with gains over CLIP of on ImageNet and on ImageNet Real when training with CC3M. Finally, our objective seems to encourage the model to learn representations that separate objects from their attributes and backgrounds, with gains of - \% over CLIP on ImageNet9. We hope the proposed solution takes a small step towards developing richer learning objectives for understanding sample relations in foundation models.  more » « less
Award ID(s):
1922658
PAR ID:
10649825
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
The International Conference on Learning Representations (ICLR 2025)
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ruiz, Francisco; Dy, Jennifer; van de Meent, Jan-Willem (Ed.)
    We propose CLIP-Lite, an information efficient method for visual representation learning by feature alignment with textual annotations. Compared to the previously proposed CLIP model, CLIP-Lite requires only one negative image-text sample pair for every positive image-text sample during the optimization of its contrastive learning objective. We accomplish this by taking advantage of an information efficient lower-bound to maximize the mutual information between the two input modalities. This allows CLIP-Lite to be trained with significantly reduced amounts of data and batch sizes while obtaining better performance than CLIP at the same scale. We evaluate CLIP-Lite by pretraining on the COCO-Captions dataset and testing transfer learning to other datasets. CLIP-Lite obtains a +14.0 mAP absolute gain in performance on Pascal VOC classification, and a +22.1 top-1 accuracy gain on ImageNet, while being comparable or superior to other, more complex, text-supervised models. CLIP-Lite is also superior to CLIP on image and text retrieval, zero-shot classification, and visual grounding. Finally, we show that CLIP-Lite can leverage language semantics to encourage bias-free visual representations that can be used in downstream tasks. Implementation: https://github.com/4m4n5/CLIP-Lite 
    more » « less
  2. Learning sentence representations which capture rich semantic meanings has been crucial for many NLP tasks. Pre-trained language models such as BERT have achieved great success in NLP, but sentence embeddings extracted directly from these models do not perform well without fine-tuning. We propose Contrastive Learning of Sentence Representations (CLSR), a novel approach which applies contrastive learning to learn universal sentence representations on top of pre-trained language models. CLSR utilizes semantic similarity of two sentences to construct positive instance for contrastive learning. Semantic information that has been captured by the pre-trained models is kept by getting sentence embeddings from these models with proper pooling strategy. An encoder followed by a linear projection takes these embeddings as inputs and is trained under a contrastive objective. To evaluate the performance of CLSR, we run experiments on a range of pre-trained language models and their variants on a series of Semantic Contextual Similarity tasks. Results show that CLSR gains significant performance improvements over existing SOTA language models. 
    more » « less
  3. When learning vision-language models (VLM) for the fashion domain, most existing works design new architectures from vanilla BERT with additional objectives, or perform dense multi-task learning with fashion-specific tasks. Though progress has been made, their architecture or objectives are often intricate and the extendibility is limited.By contrast, with simple architecture (comprising only two unimodal encoders) and just the contrastive objective, popular pre-trained VL models (e.g., CLIP) achieve superior performance in general domains, which are further easily extended to downstream tasks.However, inheriting such benefits of CLIP in the fashion domain is non-trivial in the presence of the notable domain gap. Empirically, we find that directly finetuning on fashion data leads CLIP to frequently ignore minor yet important details such as logos and composition, which are critical in fashion tasks such as retrieval and captioning.In this work, to maintain CLIP's simple architecture and objective while explicitly attending to fashion details, we propose E2 : Easy Regional Contrastive Learning of Expressive Fashion Representations. E2 introduces only a few selection tokens and fusion blocks (just 1.9\% additional parameters in total) with only contrastive losses. Despite lightweight, in our primary focus, cross-modal retrieval, E2 notably outperforms existing fashion VLMs with various fashion-specific objectives.Moreover, thanks to CLIP's widespread use in downstream tasks in general domains (e.g., zero-shot composed image retrieval and image captioning), our model can easily extend these models from general domain to the fashion domain with notable improvement.To conduct a comprehensive evaluation, we further collect data from Amazon Reviews to build a new dataset for cross-modal retrieval in the fashion domain. 
    more » « less
  4. We show that bringing intermediate layers' representations of two augmented versions of an image closer together in self-supervised learning helps to improve the momentum contrastive (MoCo) method. To this end, in addition to the contrastive loss, we minimize the mean squared error between the intermediate layer representations or make their cross-correlation matrix closer to an identity matrix. Both loss objectives either outperform standard MoCo, or achieve similar performances on three diverse medical imaging datasets: NIH-Chest Xrays, Breast Cancer Histopathology, and Diabetic Retinopathy. The gains of the improved MoCo are especially large in a low-labeled data regime (e.g. 1% labeled data) with an average gain of 5% across three datasets. We analyze the models trained using our novel approach via feature similarity analysis and layer-wise probing. Our analysis reveals that models trained via our approach have higher feature reuse compared to a standard MoCo and learn informative features earlier in the network. Finally, by comparing the output probability distribution of models fine-tuned on small versus large labeled data, we conclude that our proposed method of pre-training leads to lower Kolmogorov-Smirnov distance, as compared to a standard MoCo. This provides additional evidence that our proposed method learns more informative features in the pre-training phase which could be leveraged in a low-labeled data regime. 
    more » « less
  5. Self-supervised learning through contrastive representations is an emergent and promising avenue, aiming at alleviating the availability of labeled data. Recent research in the field also demonstrates its viability for several downstream tasks, henceforth leading to works that implement the contrastive principle through inno- vative loss functions and methods. However, despite achieving impressive progress, most methods depend on prohibitively large batch sizes and compute requirements for good performance. In this work, we propose the AUC-Contrastive Learning, a new approach to contrastive learning that demonstrates robust and competitive performance in compute-limited regimes. We propose to incorporate the contrastive objective within the AUC-maximization framework, by noting that the AUC metric is maximized upon enhancing the probability of the network’s binary prediction difference between positive and negative samples which inspires adequate embed- ding space arrangements in representation learning. Unlike standard contrastive methods, when performing stochastic optimization, our method maintains unbiased stochastic gradients and thus is more robust to batchsizes as opposed to standard stochastic optimization problems. Remarkably, our method with a batch size of 256, outperforms several state-of-the-art methods that may need much larger batch sizes (e.g., 4096), on ImageNet and other standard datasets. Experiments on transfer learning and few-shot learning tasks also demonstrate the downstream viability of our method. Code is available at AUC-CL. 
    more » « less