Abstract Balancing kinetics, a crucial priority in catalysis, is frequently achieved by sacrificing activity of elementary steps to suppress side reactions and enhance catalyst stability. Dry reforming of methane (DRM), a process operated at high temperature, usually involves fast C-H activation but sluggish carbon removal, resulting in coke deposition and catalyst deactivation. Studies focused solely on catalyst innovation are insufficient in addressing coke formation efficiently. Herein, we develop coke-free catalysts that balance kinetics of elementary steps for overall thermodynamics optimization. Beginning from a highly active cobalt aluminum oxide (CoAl2O4) catalyst that is susceptible to severe coke formation, we substitute aluminum (Al) with gallium (Ga), reporting a CoAl0.5Ga1.5O4-R catalyst that performs DRM stably over 1000 hours without observable coke deposition. We find that Ga enhances DRM stability by suppressing C-H activation to balance carbon removal. A series of coke-free DRM catalysts are developed herein by partially substituting Al from CoAl2O4with other metals.
more »
« less
This content will become publicly available on October 1, 2026
Exploiting MXenes properties for coking resistance of Ni catalyst in dry reforming of methane
The development of coke-resistant catalysts for dry reforming of methane (DRM) is critical for sustainable syngas production. To suppress coking, this study investigates the use of Ti3C2Tx and Nb2CTx MXenes as support for Ni catalysts in DRM and benchmarked their performance with conventional catalysts (Ni/γ-Al2O3, Ni/MgAl2O4, and Ni/SiO2). The MXenes were etched using NH4HF2, and a 10 wt% Ni loading on the supports was achieved via wet impregnation synthesis. Ni/Nb2CTx showed the highest H2 consumption (10.4 mmolH2/gcat). DRM was conducted at 700 °C using a feed ratio of CH4/CO2 of 1:1 and a high space velocity (90,000 ml/gcat h). Unlike the other catalysts, Ni/Nb2CTx pre-reduced at 500 °C exhibited a low normalized coking rate (4.41 µgcoke/mmolCH4), a high overall reaction rate (104 ± 13 mmol/gNi.min), and the highest turnover frequency at 16.7 s−1. The apparent CO2 reaction rate at these conditions was similar to the CH4 rate, suggesting that the low coking rate was due to the efficient utilization of dissociated oxygen. Molecular dynamics (MD) simulations performed on NbC(111) and TiC(111) surfaces at 700 °C and atmospheric pressure reveal that the efficient utilization was mediated by rapid oxygen spillover. The average oxygen velocity from the simulations was slightly higher on NbC (0.0969 Å/fs) than on TiC (0.0961 Å/fs). Both MXene supports are transformed to stable oxycarbides during DRM, and Nb2CTx was stable for 50 h TOS. This investigation not only highlights the potential of Ni/Nb2CTx as a coke- and sintering-resistant catalyst but also demonstrates the role of MXenes supports in the DRM process.
more »
« less
- Award ID(s):
- 2414683
- PAR ID:
- 10650003
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Journal of Catalysis
- Volume:
- 450
- Issue:
- C
- ISSN:
- 0021-9517
- Page Range / eLocation ID:
- 116268
- Subject(s) / Keyword(s):
- Dry reforming, MXenes, Catalyst design, Sintering resistance, Supported catalyst, Renewable energy, Syngas
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this work, a Pt catalyst supported on an equimolar Al 2 O 3 –CeO 2 binary oxide (Pt–Al–Ce) was prepared and applied in photo-thermo-chemical dry reforming of methane (DRM) driven by concentrated solar irradiation. It was found that the Pt–Al–Ce catalyst showed good stability in DRM reactions and significant enhancements in H 2 and CO production rates compared with Pt/CeO 2 (Pt–Ce) and Pt/Al 2 O 3 (Pt–Al) catalysts. At a reaction temperature of 700 °C under 30-sun equivalent solar irradiation, the Pt–Al–Ce catalyst exhibits a stable DRM catalytic performance at a H 2 production rate of 657 mmol g −1 h −1 and a CO production rate of 666 mmol g −1 h −1 , with the H 2 /CO ratio almost equal to unity. These production rates and the H 2 /CO ratio were significantly higher than those obtained in the dark at the same temperature. The light irradiation was found to induce photocatalytic activities on Pt–Al–Ce and reduce the reaction activation energy. In situ diffuse reflectance infrared Fourier transform spectroscopy ( in situ DRIFTS) was applied to identify the active intermediates in the photo-thermo-chemical DRM process, which were bidentate/monodentate carbonate, absorbed CO on Pt, and formate. The benefits of the binary Al 2 O 3 –CeO 2 substrate could be ascribed to Al 2 O 3 promoting methane dissociation while CeO 2 stabilized and eliminated possible coke formation, leading to high catalytic DRM activity and stability.more » « less
-
Previous studies have shown that fats, oils, and greases (FOG) can be deoxygenated to fuel-like hydrocarbons over inexpensive alumina-supported Ni catalysts promoted with Cu or Fe to afford excellent yields of renewable diesel (RD). In this study, supports other than alumina—namely, SiO2-Al2O3, Ce0.8Pr0.2O2, and ZrO2—were investigated to develop catalysts showing improved RD yields and resistance to coke-induced deactivation relative to Al2O3-supported catalysts. Results showed that catalysts supported on Ce0.8Pr0.2O2 and ZrO2 outperformed SiO2-Al2O3-supported formulations, with 20%Ni-5%Fe/ZrO2 affording a quantitative yield of diesel-like hydrocarbons. Notably, the abundance of weak acid sites varied considerably across the different supports, and a moderate concentration of these sites corresponded with the best results. Additionally, temperature-programmed reduction measurements revealed that Ni reduction is greatly dependent on both the identity of the promoter and catalyst support, which can also be invoked to explain catalyst performance since metallic Ni is identified as the likely active site for the deoxygenation reaction. It was also observed that Ce0.8Pr0.2O2 provides high oxygen storage capacity and oxygen mobility/accessibility, which also improves catalyst activity.more » « less
-
The current study reports LaFe1-xMnxO3−δ redox catalysts (RCs) for CO2-splitting and methane partial oxidation (CH4-POx) in a cyclic redox scheme. Lanthanum (La) was chosen as the A-site cation whereas iron (Fe) and manganese (Mn) were chosen as the B-site cations, respectively. La, Fe, and Mn were incorporated into the perovskite structure (LaFe1-xMnxO3−δ) at various Fe/Mn ratios to tailor the equilibrium oxygen partial pressures for CO2-splitting and methane partial oxidation. Compared to the standalone redox pairs of Fe and Mn (i.e., Fe2O3/Fe3O4, Fe3O4/FeO, and Mn2O3/Mn3O4) which, from a thermodynamic standpoint, favor the complete combustion of CH4, the perovskite structured redox catalysts (RCs, i.e., LaFe1-xMnxO3−δ) favored the selective oxidation of CH4 to syngas. In addition, impregnating the RCs with 1 wt% ruthenium (Ru) led to a significant improvement in their redox kinetics without affecting their redox thermodynamics. The Ru-impregnated, perovskite structured RCs (i.e., LaFeO3, LaFe0.625Mn0.375O3, and LaFe0.5Mn0.5O3 ) exhibited excellent redox performance in terms of the syngas yield (92 – 100%) and CO2 conversion (95 - 98%). Long-term redox testing over Ru-impregnated LaFeO3 and LaFe0.5Mn0.5O3 demonstrated relatively stable performance for 100 redox cycles whereas activity loss was observed for LaFe0.625Mn0.375O3, LaFe0.375Mn0.625O3, and LaMnO3 respectively. Among RCs containing both Mn and Fe, LaFe0.5Mn0.5O3 exhibited the best performance, maintaining satisfactory activity over 100 cycles and higher oxygen capacity. XRD and XPS analysis suggest that the ability to regenerate the perovskite phase under a CO2 environment and a near surface A:B site cation ratio close to the perovskite stoichiometry would likely correspond to more stable performance. Additionally, the inclusion of Mn on the B-site enhances the coke resistance of the redox catalyst when compared to undoped LaFeO3.more » « less
-
In an epoch dominated by escalating concerns over climate change and looming energy crises, the imperative to design highly efficient catalysts that can facilitate the sequestration and transformation of carbon dioxide (CO2) into beneficial chemicals is paramount. This research presents the successful synthesis of nanofiber catalysts, incorporating monometallic nickel (Ni) and cobalt (Co) and their bimetallic blend, NiCo, via a facile electrospinning technique, with precise control over the Ni/Co molar ratios. Application of an array of advanced analytical methods, including SEM, TGA–DSC, FTIR-ATR, XRD, Raman, XRF, and ICP-MS, validated the effective integration and homogeneous distribution of active Ni/Co catalysts within the nanofibers. The catalytic performance of these mono- and bimetallic Ni/Co nanofiber catalysts was systematically examined under ambient pressure conditions for CO2 hydrogenation reactions. The bimetallic NiCo nanofiber catalysts, specifically with a Ni/Co molar ratio of 1:2, and thermally treated at 1050 °C, demonstrated a high CO selectivity (98.5%) and a marked increase in CO2 conversion rate—up to 16.7 times that of monometallic Ni nanofiber catalyst and 10.8 times that of the monometallic Co nanofiber catalyst. This significant enhancement in catalytic performance is attributed to the improved accessibility of active sites, minimized particle size, and the strong Ni–Co–C interactions within these nanofiber structures. These nanofiber catalysts offer a unique model system that illuminates the fundamental aspects of supported catalysis and accentuates its crucial role in addressing pressing environmental challenges.more » « less
An official website of the United States government
