skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Brittle and ductile deformations in uniaxial compression of Si micropillars
This work presents a multiscale study of the uniaxial compression of Si pillars, with diameters ranging from 50 nm to 360 nm, using the Concurrent Atomistic-Continuum (CAC) method. The simulations reproduce the brittle and ductile deformation behaviors of Si pillars observed in experiments. For defect-free Si pillars compressed by a perfectly smooth flat punch with a repulsive force field to reflect an assumed rigid indenter, dislocations are nucleated from the corner of the bottom surface for pillars with diameters of 100 nm and below, while for pillars with diameters of 220 nm and above, dislocations nucleate from the top surface; multiple slip systems are activated in all pillars except for the pillar with a diameter of 50 nm. A strong size effect is thus demonstrated with regard to the nucleation of dislocations. Another key finding is the critical role of defects on the indenter surface. For a perfectly flat indenter, all the defect-free Si pillars with diameters ranging from 50 nm to 360 nm exhibit ductile deformation. By contrast, for an indenter with surface steps, all pillars with diameters of 100 nm and above deform in a brittle manner. These surface steps cause sequential nucleation of dislocations and activation of two slip systems, leading to dislocation intersection and formation of a sessile Lomer lock. Continued pileups of dislocations against the Lomer lock lead to the initiation of a crack at the intersection. The deformation mechanism underlying the crack formation is thus demonstrated.  more » « less
Award ID(s):
2054607
PAR ID:
10650005
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Elsevier Inc.
Date Published:
Journal Name:
Acta Materialia
Volume:
291
Issue:
C
ISSN:
1359-6454
Page Range / eLocation ID:
121007
Subject(s) / Keyword(s):
Concurrent atomistic continuum simulation, Brittle to ductile transition, Dislocation pileup, Lomer lock, Crack formation, Si pillars, Surface defects
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, the modified slip/fracture activation model has been used in order to understand the mechanism of ductile-brittle transition on the R-plane of sapphire during ultra-precision machining by reflecting direction of resultant force. Anisotropic characteristics of crack morphology and ductility of machining depending on cutting direction were explained in detail with modified fracture cleavage and plastic deformation parameters. Through the analysis, it was concluded that crack morphologies were mainly determined by the interaction of multiple fracture systems activated while, critical depth of cut was determined by the dominant plastic deformation parameter. In addition to this, by using proportionality relationship between magnitude of resultant force and depth of cut in the ductile region, an empirical model for critical depth of cut was developed. 
    more » « less
  2. Abstract Experimentally quantifying the viscoplastic rheology of olivine at the high stresses and low temperatures of the shallow lithosphere is challenging due to olivine's propensity to deform by brittle mechanisms at these conditions. In this study, we use microscale uniaxial compression tests to investigate the rheology of an olivine single crystal at room pressure and temperature. Pillars with nominal diameters of 1.25 μm were prepared using a focused ion beam milling technique and were subjected to sustained axial stresses of several gigapascal. The majority of the pillars failed after dwell times ranging from several seconds to a few hours. However, several pillars exhibited clear evidence of plastic deformation without failure after 4–8 hr under load. The corresponding creep strain rates are estimated to be on the order of 10−6to 10−7 s−1. The uniaxial stresses required to achieve this deformation (4.1–4.4 GPa) are in excellent agreement with complementary data obtained using nanoindentation techniques. Scanning transmission electron microscopy observations indicate that deformation occurred along amorphous shear bands within the deformed pillars. Electron energy loss spectroscopy measurements revealed that the bands are enriched in Fe and depleted in Mg. We propose that inhomogeneities in the cation distribution in olivine concentrate stress and promote the amorphization of the Fe‐rich regions. The time dependence of catastrophic failure events suggests that the amorphous bands must grow to some critical length scale to generate an unstable defect, such as a shear crack. 
    more » « less
  3. Water ice Ih exhibits brittle behavior when rapidly loaded. Under tension, it fails via crack nucleation and propagation. Compressive failure is more complicated. Under low confinement, cracks slide and interact to form a frictional (Coulombic) fault. Under high confinement, frictional sliding is suppressed and adiabatic heating through crystallographic slip leads to the formation of a plastic fault. The coefficient of static friction increases with time under load, owing to creep of asperities in contact. The coefficient of kinetic (dynamic) friction, set by the ratio of asperity shear strength to hardness, increases with velocity at lower speeds and decreases at higher speeds as contacts melt through frictional heating. Microcracks, upon reaching a critical number density (which near the ductile-to-brittle transition is nearly constant above a certain strain rate), form a pathway for percolation. Additional work is needed on the effects of porosity and crack healing. ▪ An understanding of brittle failure is essential to better predict the integrity of the Arctic and Antarctic sea ice covers and the tectonic evolution of the icy crusts of Enceladus, Europa, and other extraterrestrial satellites. ▪ Fundamental to the brittle failure of ice is the initiation and propagation of microcracks, frictional sliding across crack faces, and localization of strain through both crack interaction and adiabatic heating. 
    more » « less
  4. Abstract Typical ductile materials are metals, which deform by the motion of defects like dislocations in association with non-directional metallic bonds. Unfortunately, this textbook mechanism does not operate in most inorganic semiconductors at ambient temperature, thus severely limiting the development of much-needed flexible electronic devices. We found a shear-deformation mechanism in a recently discovered ductile semiconductor, monoclinic-silver sulfide (Ag2S), which is defect-free, omni-directional, and preserving perfect crystallinity. Our first-principles molecular dynamics simulations elucidate the ductile deformation mechanism in monoclinic-Ag2S under six types of shear systems. Planer mass movement of sulfur atoms plays an important role for the remarkable structural recovery of sulfur-sublattice. This in turn arises from a distinctively high symmetry of the anion-sublattice in Ag2S, which is not seen in other brittle silver chalcogenides. Such mechanistic and lattice-symmetric understanding provides a guideline for designing even higher-performance ductile inorganic semiconductors. 
    more » « less
  5. Bulk, polycrystalline (Co, Cu, Mg, Ni, Zn)O was synthesized using solid-state sintering. Micropillars were prepared and mechanically deformed along three crystallographic orientations: (001), (101), and (111). Pillars (001) and (111) cracked, while Pillar (101) remained intact. Pillars (001) and (101) exhibited activated slip systems, confirmed by a large stress drop, and the presence of slip bands, respectively. Schmid factor (SF) analysis was performed to examine the effect of grain orientations on dislocation activity and slip behavior. SF values range from 0 to 0.5, with non-zero values indicating potential for slip. Six slip systems exist in the (Co, Cu, Mg, Ni, Zn)O rock salt crystal structure: 1/2⟨110⟩11¯0. For the (001) orientation, four slip systems are potentially active (SF = 0.5). For the (101) orientation, there are four potentially active slip systems (SF = 0.25). For the (111) orientation, no potentially active slips systems exist (SF = 0). Dislocation structures, which were observed post-compression via transmission electron microscopy, demonstrated variations in size, number, and distribution across the pillar, depending on micropillar orientation. Entangled dislocations created misorientation in Pillar (001), which led to the possible formation of subgrains, while singular dislocations were observed in Pillar (101), and a lack of dislocations was observed in Pillar (111). Zener–Stroh type dislocation entanglement-mediated cracking is the proposed cause of the transgranular-type cracks in Pillar (001). The possible subgrain formation, or lack of formation, respectively, caused intergranular-type cracks to additionally form in Pillar (001), while Pillar (111) only exhibited transgranular-type brittle fracture. In combination, these findings highlight the importance of dislocation activity, without the need for elevated temperature, and grain orientation in controlling the mechanical deformation response in single-phase (Co, Cu, Mg, Ni, Zn)O. 
    more » « less