We investigate how robotic camera systems can offer new capabilities to computer-supported cooperative work through the design, development, and evaluation of a prototype system called Periscope. With Periscope, a local worker completes manipulation tasks with guidance from a remote helper who observes the workspace through a camera mounted on a semi-autonomous robotic arm that is co-located with the worker. Our key insight is that the helper, the worker, and the robot should all share responsibility of the camera view-an approach we call shared camera control. Using this approach, we present a set of modes that distribute the control of the camera between the human collaborators and the autonomous robot depending on task needs. We demonstrate the system's utility and the promise of shared camera control through a preliminary study where 12 dyads collaboratively worked on assembly tasks. Finally, we discuss design and research implications of our work for future robotic camera systems that facilitate remote collaboration.
more »
« less
This content will become publicly available on September 27, 2026
NarraGuide: an LLM-based Narrative Mobile Robot for Remote Place Exploration
Robotic telepresence enables users to navigate and experience remote environments. However, effective navigation and situational awareness depend on users’ prior knowledge of the environment, limiting the usefulness of these systems for exploring unfamiliar places. We explore how integrating location-aware LLM-based narrative capabilities into a mobile robot can support remote exploration. We developed a prototype system, called NarraGuide, that provides narrative guidance for users to explore and learn about a remote place through a dialogue-based interface. We deployed our prototype in a geology museum, where remote participants (𝑛 = 20) used the robot to tour the museum. Our findings reveal how users perceived the robot’s role, engaged in dialogue in the tour, and expressed preferences for bystander encountering. Our work demonstrates the potential of LLM-enabled robotic capabilities to deliver location-aware narrative guidance and enrich the experience of exploring remote environments.
more »
« less
- PAR ID:
- 10650083
- Publisher / Repository:
- ACM
- Date Published:
- Page Range / eLocation ID:
- 1 to 15
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper addresses the problem of robotic exploration of unknown indoor environments with deadlines. Indoor exploration using mobile robots has typically focused on exploring the entire environment without considering deadlines. The objective of the prioritized exploration in this paper is to rapidly compute the geometric layout of an initially unknown environment by exploring key regions of the environment and returning to the home location within a deadline. This prioritized exploration is useful for time-critical and dangerous environments where rapid robot exploration can provide vital information for subsequent operations. For example, firefighters, for whom time is of the essence, can utilize the map generated by this robotic exploration to navigate a building on fire. In our previous work, we showed that a priority-based greedy algorithm can outperform a cost-based greedy algorithm for exploration under deadlines. This paper models the prioritized exploration problem as an Orienteering Problem (OP) and a Profitable Tour Problem (PTP) in an attempt to generate exploration strategies that can explore a greater percentage of the environment in a given amount of time. The paper presents simulation results on multiple graph-based and Gazebo environments. We found that in many cases the priority-based greedy algorithm performs on par or better than the OP and PTP-based algorithms. We analyze the potential reasons for this counterintuitive result.more » « less
-
Abstract Bringing human–robot interaction (HRI) into conversation with scholarship from human geography, this paper considers how socially interactive robots become important agents in the production of social space and explores the utility of core geographic concepts ofscaleandplaceto critically examine evolving robotic spatialities. The paper grounds this discussion through reflections on a collaborative, interdisciplinary research project studying the development and deployment of interactive museum tour-guiding robots on a North American university campus. The project is a collaboration among geographers, roboticists, a digital artist, and the directors/curators of two museums, and involves experimentation in the development of a tour-guiding robot with a “socially aware navigation system” alongside ongoing critical reflection into the socio-spatial context of human–robot interactions and their future possibilities. The paper reflects on the tensions between logics of control and contingency in robotic spatiality and argues that concepts of scale and place can help reflect on this tension in a productive way while calling attention to a broader range of stakeholders who should be included in robotic design and deployment.more » « less
-
null (Ed.)As the popularity of online travel platforms increases, users tend to make ad-hoc decisions on places to visit rather than preparing the detailed tour plans in advance. Under the situation of timeliness and uncertainty of users’ demand, how to integrate real-time context into a dynamic and personalized recommendations have become a key issue in travel recommender system. In this paper, by integrating the users’ historical preferences and real-time context, a location-aware recommender system called TRACE (Travel Reinforcement Recommendations Based on Location-Aware Context Extraction) is proposed. It captures users’ features based on location-aware context learning model, and makes dynamic recommendations based on reinforcement learning. Specifically, this research: (1) designs a travel reinforcing recommender system based on an Actor-Critic framework, which can dynamically track the user preference shifts and optimize the recommender system performance; (2) proposes a location-aware context learning model, which aims at extracting user context from real-time location and then calculating the impacts of nearby attractions on users’ preferences; and (3) conducts both offline and online experiments. Our proposed model achieves the best performance in both of the two experiments, which demonstrates that tracking the users’ preference shifts based on real-time location is valuable for improving the recommendation results.more » « less
-
Autonomous robots that understand human instructions can significantly enhance the efficiency in human-robot assembly operations where robotic support is needed to handle unknown objects and/or provide on-demand assistance. This paper introduces a vision AI-based method for human-robot collaborative (HRC) assembly, enabled by a large language model (LLM). Upon 3D object reconstruction and pose establishment through neural object field modelling, a visual servoing-based mobile robotic system performs object manipulation and navigation guidance to a mobile robot. The LLM model provides text-based logic reasoning and high-level control command generation for natural human-robot interactions. The effectiveness of the presented method is experimentally demonstrated.more » « less
An official website of the United States government
