skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 4, 2026

Title: Exploring the Use of Robots for Diary Studies
As interest in studying in-the-wild human-robot interaction grows, there is a need for methods to collect data over time and in naturalistic or potentially private environments. HRI researchers have increasingly used the diary method for these studies, asking study participants to self-administer a structured data collection instrument, i.e., a diary, over a period of time. Although the diary method offers a unique window into settings that researchers may not have access to, they also lack the interactivity and probing that interview-based methods offer. In this paper, we explore a novel data collection method in which a robot plays the role of an interactive diary. We developed the Diary Robot system and performed in-home deployments for a week to evaluate the feasibility and effectiveness of this approach. Using traditional text-based and audio-based diaries as benchmarks, we found that robots are able to effectively elicit the intended information. We reflect on our findings, and describe scenarios where the utilization of robots in diary studies as a data collection instrument may be especially applicable.  more » « less
Award ID(s):
2312354
PAR ID:
10650085
Author(s) / Creator(s):
 ;  
Publisher / Repository:
IEEE
Date Published:
Page Range / eLocation ID:
174 to 182
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Human–robot collaboration has emerged as a prominent research topic in recent years. To enhance collaboration and ensure safety between humans and robots, researchers employ a variety of methods. One such method is physiological computing, which aims to estimate a human’s psycho-physiological state by measuring various physiological signals such as galvanic skin response (GSR), electrocardiograph (ECG), heart rate variability (HRV), and electroencephalogram (EEG). This information is then used to provide feedback to the robot. In this paper, we present the latest state-of-the-art methods in physiological computing for human–robot collaboration. Our goal is to provide a comprehensive guide for new researchers to understand the commonly used physiological signals, data collection methods, and data labeling techniques. Additionally, we have categorized and tabulated relevant research to further aid in understanding this area of study. 
    more » « less
  2. In recent years, researchers have developed technology to analyze human facial expressions and other affective data at very high time resolution. This technology is enabling researchers to develop and study interactive robots that are increasingly sensitive to their human interaction partners’ affective states. However, typical interaction planning models and algorithms operate on timescales that are frequently orders of magnitude larger than the timescales at which real-time affect data is sensed. To bridge this gap between the scales of sensor data collection and interaction modeling, affective data must be aggregated and interpreted over longer timescales. In this paper we clarify and formalize the computational task of affect interpretation in the context of an interactive educational game played by a human and a robot, during which facial expression data is sensed, interpreted, and used to predict the interaction partner’s gameplay behavior. We compare different techniques for affect interpretation, used to generate sets of affective labels for an interactive modeling and inference task, and evaluate how the labels generated by each interpretation technique impact model training and inference. We show that incorporating a simple method of personalization into the affect interpretation process — dynamically calculating and applying a personalized threshold for determining affect feature labels over time — leads to a significant improvement in the quality of inference, comparable to performance gains from other data pre-processing steps such as smoothing data via median filter. We discuss the implications of these findings for future development of affect-aware interactive robots and propose guidelines for the use of affect interpretation methods in interactive scenarios. 
    more » « less
  3. Lovable robots in movies regularly beep, chirp, and whirr, yet robots in the real world rarely deploy such sounds. Despite preliminary work supporting the perceptual and objective benefits of intentionally-produced robot sound, relatively little research is ongoing in this area. In this paper, we systematically evaluate transformative robot sound across multiple robot archetypes and behaviors. We conducted a series of five online video-based surveys, each with N ≈ 100 participants, to better understand the effects of musician-designed transformative sounds on perceptions of personal, service, and industrial robots. Participants rated robot videos with transformative sound as significantly happier, warmer, and more competent in all five studies, as more energetic in four studies, and as less discomforting in one study. Overall, results confirmed that transformative sounds consistently improve subjective ratings but may convey affect contrary to the intent of affective robot behaviors. In future work, we will investigate the repeatability of these results through in-person studies and develop methods to automatically generate transformative robot sound. This work may benefit researchers and designers who aim to make robots more favorable to human users. 
    more » « less
  4. In this work, we analyze video data and interviews from a public deployment of two trash barrel robots in a large public space to better understand the sensemaking activities people perform when they encounter robots in public spaces. Based on an analysis of 274 human–robot interactions and interviews withN =65 individuals or groups, we discovered that people were responding not only to the robots or their behavior, but also to the general idea of deploying robots as trashcans, and the larger social implications of that idea. They wanted to understand details about the deployment because having that knowledge would change how they interact with the robot. Based on our data and analysis, we have provided implications for design that may be topics for future human–robot design researchers who are exploring robots for public space deployment. Furthermore, our work offers a practical example of analyzing field data to make sense of robots in public spaces. 
    more » « less
  5. Research that involves a large and broad sample of museums can produce a representative picture of the entire museum sector and lead to global insights that may not be attainable through a more local lens. However, many museum research projects use a small sample of museums, meant to represent the entire field. We propose a research method that distributes data collection across a broad swath of museums to provide local detail that can be used to assemble a collective picture on a topic of interest to the field. This method, called crowdsourced data collection, was used in a yearlong study of zoos and aquariums in North America, in which 95 institutions were asked to collect data for one to two survey modules per month. We hoped this approach would produce data comparable to data gathered with conventional methods and reduce burden on participating institutions. We found the method replicated nationally representative studies with two validated scales. While only one third of the institutions completed all modules, institutions typically did 8-9 modules, with only slight decreases in the probability of completing the study over time. These results suggest researchers can use crowdsourced data collection to reliably study the museum sector. We also discuss the challenges of this method for researchers and institutions participating as data collection sites. 
    more » « less