skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2026

Title: Upcycling Nutshells: Reinforced Polymers and Biocomposites
This review highlights recent advances in the use of nutshell-derived materials, including peanut, walnut, and other lignocellulosic shell wastes, as reinforcers in polymer composites. The focus is placed on evaluating how the incorporation of nutshell fillers influences the mechanical and thermal properties of various polymer matrices. Key findings across multiple studies show that nutshell reinforcement can significantly enhance tensile strength, modulus, thermal stability, and biodegradability, depending on filler concentration, particle size, and surface treatment. The review also discusses the sustainability and economic benefits of using agricultural waste as a functional additive, offering insights into the design of low-cost, eco-friendly polymer composites for packaging, construction, and environmental applications.  more » « less
Award ID(s):
2203669
PAR ID:
10650105
Author(s) / Creator(s):
;
Publisher / Repository:
mdpi
Date Published:
Journal Name:
Sustainable Chemistry
Volume:
6
Issue:
3
ISSN:
2673-4079
Page Range / eLocation ID:
25
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To push upper boundaries of thermal conductivity in polymer composites, understanding of thermal transport mechanisms is crucial. Despite extensive simulations, systematic experimental investigation on thermal transport in polymer composites is limited. To better understand thermal transport processes, we design polymer composites with perfect fillers (graphite) and defective fillers (graphite oxide), using polyvinyl alcohol (PVA) as a matrix model. Measured thermal conductivities of ~1.38 ± 0.22 W m−1K−1in PVA/defective filler composites is higher than those of ~0.86 ± 0.21 W m−1K−1in PVA/perfect filler composites, while measured thermal conductivities in defective fillers are lower than those of perfect fillers. We identify how thermal transport occurs across heterogeneous interfaces. Thermal transport measurements, neutron scattering, quantum mechanical modeling, and molecular dynamics simulations reveal that vibrational coupling between PVA and defective fillers at PVA/filler interfaces enhances thermal conductivity, suggesting that defects in polymer composites improve thermal transport by promoting this vibrational coupling. 
    more » « less
  2. The major challenge to fabricate MXene/polymer composites are the processing conditions and poor control over the distribution of the MXene nanosheets within the polymer matrix. Traditional ways involve the direct mix of fillers and polymers to form a random homogeneous composite, which leads to inefficient use of fillers. To address these challenges, researchers have focused on the development of ordered MXene/polymer composite structures using various fabrication strategies. In this review, we summarize recent advances of structured MXene/polymer composites and their processing-structure-property relationships. Two main forms of MXene/polymer composites (films and foams) are separately discussed with a focus on the detailed fabrication means and corresponding structures. These architected composites complement those in which MXenes nanosheets are isotropically dispersed throughout, such as those formed by aqueous solution mixing approaches. This review culminates in a perspective on the future opportunities for architected MXene/polymer composites. 
    more » « less
  3. Abstract Polymer composites with salts or conductive fillers are promising for various solid‐state energy storage applications, where processability is often determined by their rheological properties. This study investigates the effect of lithium salts and conductive fillers on the rheological behavior of polylactic acid (PLA)‐based composites. We specifically examine how these additives influence complex viscosity and the interactions between the salt, fillers, and polymer. Our findings reveal that adding salt to the polymer reduces its viscosity, whereas adding conductive fillers imparts a shear‐thinning property, which is advantageous for thermal processing methods like thermal drawing, injection molding, or 3D printing. The combination of salt and conductive fillers results in multifunctional electrode‐electrolyte composites with enhanced shear‐thinning behavior and improved storage modulus. Characterizations through x‐ray diffraction, electrical measurements, and transmission electron microscopy link the electrical properties and morphology with rheological behavior. The formation of a robust filler network in these composites ensures stable viscoelastic behavior across a range of temperatures and frequencies, indicating their suitability for efficient manufacturing of polymer‐based solid‐state electrode‐electrolyte composites via thermal processing. HighlightsShear‐thinning behavior enhanced by conductive fillers.Viscosity increased with CB and CNT fillers, forming robust networks.Salt reduced viscosity but filler networks dominated flow behavior.Filler combinations led to stable viscoelastic properties across temperatures.Polymer electrolyte–electrode composites improved processability and storage modulus. 
    more » « less
  4. This review is focused on an attractive class of polymer‐derived high‐temperature ceramics, namely, polymer‐derived nonoxide materials. With a brief introduction of high‐temperature nonoxides, the origin of using polycarbosilane (PCS) polymer melt spinning to synthesize silicon carbide (SiC) fibers is traced back. For SiC formation, the four stages for the conversion from polymer precursors to microcrystalline ceramics are examined first: crosslinking, polymer decomposition, ceramic formation, and crystallization. Also, the important parameters related to PCS pyrolysis are explained, and polymer‐derived SiC microstructures and compositions are evaluated. Solid‐solution carbides and transition metal carbides are further reviewed. For boride materials, the discussion is focused on transition metal borides and boride composites. Similar to PCS conversion to SiC, nitride materials mostly start with polycarbosilazane (PSZ) precursors and form into the final materials through pyrolysis. With different carbide and nitride precursors mixed and pyrolyzed together, high‐temperature nonoxide composites are formed. Such molecular‐level intermixing and versatile capability of forming different shapes enable many exciting properties. Among these are mechanical and thermal properties, along with electrical conductivity, electromagnetic shielding, and charge storage capability. An overview of applications of polymer‐derived nonoxides is provided, followed by a summary and outlook. 
    more » « less
  5. Polymer matrix composites have been used extensively in the aerospace and automotive industries. Nevertheless, the growing demand for composites raises concerns about the thermal stability, cost, and environmental impacts of synthetic fillers like graphene and carbon nanotubes. Hence, this study investigates the possibility of enhancing the thermomechanical properties of polymer composites through the incorporation of agricultural waste as fillers. Particles from walnut, coffee, and coconut shells were used as fillers to create particulate composites. Bio-based composites with 10 to 30 wt.% filler were created by sifting these particles into various mesh sizes and dispersing them in an epoxy matrix. In comparison to the pure polymer, DSC results indicated that the inclusion of 50 mesh 30 wt.% agricultural waste fillers increased the glass transition temperature by 8.5%, from 55.6 °C to 60.33 °C. Also, the TGA data showed improved thermal stability. Subsequently, the agricultural wastes were employed as reinforcement for laminated composites containing woven glass fiber with a 50% fiber volume fraction, eight plies, and varying particle filler weight percentages from 0% to 6% with respect to the laminated composite. The hybrid laminated composite demonstrated improved impact resistance of 142% in low-velocity impact testing. These results demonstrate that fillers made of agricultural wastes can enhance the thermomechanical properties of sustainable composites, creating new environmentally friendly prospects for the automotive and aerospace industries. 
    more » « less