skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pd and Fe Cocatalyzed Synthesis of Remotely Borylated Aza-Heterocycles
We report the intramolecular 1,n-aminoboration for the simultaneous synthesis of aza-heterocycles with distal carbon–boron bonds. Pd-catalyzed remote 1,n-aminoboration occurs with 1,2-disubstituted alkenes; upon aminopalladation of the olefin, chain-walking generates the terminal Pd-alkyl intermediate which selectively undergoes Fe-catalyzed borylation. Terminal bishomoallylic amines, amides, carba-mates, and ureas afford the borylated pyrrolidines and lactams through 1,2-aminoboration. Forty-one examples of 1,n-borylated hetero-cycles are presented with yields up to 92% yield. Derivatization of the products is explored: cross-coupling, amination, and oxidation to access unnatural amino alcohols and acids.  more » « less
Award ID(s):
2155133
PAR ID:
10650115
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
ACS Catalysis
Volume:
14
Issue:
24
ISSN:
2155-5435
Page Range / eLocation ID:
18507 to 18514
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Two catalytic systems have been developed for the arylboration of endocyclic enecarbamates to deliver synthetically versatile borylated saturated N‐heterocycles in good regio‐ and diastereoselectivities. A Cu/Pd dual catalytic reaction enables the synthesis of borylated, α‐arylated azetidines, while a Ni‐catalysed arylboration reaction efficiently functionalizes 5‐, 6‐, and 7‐membered enecarbamates. In the case of the Cu/Pd‐system, a remarkable additive effect was identified that allowed for broader scope. The products are synthetically useful, as demonstrated by manipulations of the boronic ester to access biologically active compounds. 
    more » « less
  2. Although chelation-assisted C–H olefination has been intensely investigated, Pd( ii )-catalyzed C–H olefination reactions are largely restricted to acrylates and styrenes. Here we report a quinoline-derived ligand that enables the Pd( ii )-catalyzed olefination of the C(sp 2 )–H bond with simple aliphatic alkenes using a weakly coordinating monodentate amide auxiliary. Oxygen is used as the terminal oxidant with catalytic copper as the co-oxidant. A variety of functional groups in the aliphatic alkenes are tolerated. Upon hydrogenation, the ortho -alkylated product can be accessed. The utility of this reaction is also demonstrated by the late-stage diversification of drug molecules. 
    more » « less
  3. Abstract We disclose a Ni‐catalyzed cyclization/alkylmetal interception reaction in which products are readily linearized to permit regiodefined alkene dicarbofunctionalization. This method offers a convenient route to access 1,2‐oxasilolane heterocycles, 3‐hydroxysilanes and 4‐arylalkanols with the formation of C(sp3)−C(sp3) bonds at primary and secondary alkyl carbon centers. In this reaction, a silicon‐oxygen (Si−O) bond functions as a detachable linker that can be delinked with several hydride, alkyl, aryl and vinyl nucleophiles to create profusely functionalized 3‐hydroxysilanes. A silicon motif in the cyclic C(sp3)−Si−O construct in 1,2‐oxasilolane heterocycles can also be selectively deleted by Pd‐catalyzed hydrodesilylation affording Si‐ablated linear alcohol products reminiscent of vicinal ethylene dicarbofunctionalization with C(sp3) and C(sp2) carbon sources. 
    more » « less
  4. null (Ed.)
    Pd-catalyzed C–H arylation of heteorarenes is an important and widely studied synthetic transformation; however, the regioselectivity is often substrate-controlled. Here, we report catalyst-controlled regioselectivity in the Pd-catalyzed oxidative coupling of N-(phenylsulfonyl)indoles and aryl boronic acids using O2 as the oxidant. Both C2- and C3-arylated indoles are obtained in good yield with >10:1 selectivity. A switch from C2 to C3 regioselectivity is achieved by including 4,5-diazafluoren-9-one or 2,2'-bipyrimidine as an ancillary ligand to a "ligand-free" Pd(OTs)2 catalyst system. Density functional theory calculations indicate that the switch in selectivity arises from a change in the mechanism, from a C2-selective oxidative-Heck pathway to a C3-selective C–H activation/reductive elimination pathway. 
    more » « less
  5. null (Ed.)
    Allylic substitution, pioneered by the work of Tsuji and Trost, has been an invaluable tool in the synthesis of complex molecules for decades. An attractive alternative to allylic substitution is the direct functionalization of allylic C–H bonds of unactivated alkenes, thereby avoiding the need for prefunctionalization. Significant early advances in allylic C–H functionalization were made using palladium catalysis. However, Pd-catalyzed reactions are generally limited to the functionalization of terminal olefins with stabilized nucleophiles. Insights from Li, Cossy, and Tanaka demonstrated the utility of RhCp x catalysts for allylic functionalization. Since these initial reports, a number of key intermolecular Co-, Rh-, and Ir-catalyzed allylic C–H functionalization reactions have been reported, offering significant complementarity to the Pd-catalyzed reactions. Herein, we report a summary of recent advances in intermolecular allylic C–H functionalization via group IX-metal π-allyl complexes. Mechanism-driven development of new catalysts is highlighted, and the potential for future developments is discussed. 
    more » « less