skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Efficient computation of soliton gas primitive potentials
We consider the problem of computing a class of soliton gas primitive potentials for the Korteweg-de Vries equation that arise from the accumulation of solitons on an infinite interval in the physical domain, extending to $$-\infty$$. This accumulation results in an associated Riemann-Hilbert Problem (RHP) on a number of disjoint intervals. In the case where the jump matrices have specific square-root behaviour, we describe an efficient and accurate numerical method to solve this RHP and extract the potential. The keys to the method are, first, the deformation of the RHP, making numerical use of the so-called $$g$$-function, and, second, the incorporation of endpoint singularities into the chosen basis to discretize and solve the associated singular integral equation.  more » « less
Award ID(s):
2108029
PAR ID:
10650353
Author(s) / Creator(s):
; ;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Journal of Nonlinear Waves
Volume:
1
ISSN:
3033-4268
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nguyen, Dinh-Liem; Nguyen, Loc; Nguyen, Thi-Phong (Ed.)
    This paper is concerned with the numerical solution to the direct and inverse electromagnetic scattering problem for bi-anisotropic periodic structures. The direct problem can be reformulated as an integro-di erential equation. We study the existence and uniqueness of solution to the latter equation and analyze a spectral Galerkin method to solve it. This spectral method is based on a periodization technique which allows us to avoid the evaluation of the quasiperiodic Green's tensor and to use the fast Fourier transform in the numerical implementation of the method. For the inverse problem, we study the orthogonality sampling method to reconstruct the periodic structures from scattering data generated by only two incident fields. The sampling method is fast, simple to implement, regularization free, and very robust against noise in the data. Numerical examples for both direct and inverse problems are presented to examine the efficiency of the numerical solvers. 
    more » « less
  2. null (Ed.)
    This paper is concerned with the inverse scattering problem which aims to determine the spatially distributed dielectric constant coefficient of the 2D Helmholtz equation from multifrequency backscatter data associated with a single direction of the incident plane wave. We propose a globally convergent convexification numerical algorithm to solve this nonlinear and ill-posed inverse problem. The key advantage of our method over conventional optimization approaches is that it does not require a good first guess about the solution. First, we eliminate the coefficient from the Helmholtz equation using a change of variables. Next, using a truncated expansion with respect to a special Fourier basis, we approximately reformulate the inverse problem as a system of quasilinear elliptic PDEs, which can be numerically solved by a weighted quasi-reversibility approach. The cost functional for the weighted quasi-reversibility method is constructed as a Tikhonov-like functional that involves a Carleman Weight Function. Our numerical study shows that, using a version of the gradient descent method, one can find the minimizer of this Tikhonov-like functional without any advanced a priori knowledge about it. 
    more » « less
  3. Abstract Fractional PDEs have recently found several geophysics and imaging science applications due to their nonlocal nature and their flexibility in capturing sharp transitions across interfaces.However, this nonlocality makes it challenging to design efficient solvers for such problems.In this paper, we introduce a spectral method based on an ultraspherical polynomial discretization of the Caffarelli–Silvestre extension to solve such PDEs on rectangular and disk domains.We solve the discretized problem using tensor equation solvers and thus can solve higher-dimensional PDEs.In addition, we introduce both serial and parallel domain decomposition solvers.We demonstrate the numerical performance of our methods on a 3D fractional elliptic PDE on a cube as well as an application to optimization problems with fractional PDE constraints. 
    more » « less
  4. In this work, we develop numerical methods to solve forward and inverse wave problems for a nonlinear Helmholtz equation defined in a spherical shell between two concentric spheres centred at the origin. A spectral method is developed to solve the forward problem while a combination of a finite difference approximation and the least squares method are derived for the inverse problem. Numerical examples are given to verify the method. ReferencesR. Askey. Orthogonal polynomials and special functions. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, 1975. doi: 10.1137/1.9781611970470G. Baruch, G. Fibich, and S. Tsynkov. High-order numerical method for the nonlinear Helmholtz equation with material discontinuities in one space dimension. Nonlinear Photonics. Optica Publishing Group, 2007. doi: 10.1364/np.2007.ntha6G. Fibich and S. Tsynkov. High-Order Two-Way Artificial Boundary Conditions for Nonlinear Wave Propagation with Backscattering. J. Comput. Phys. 171 (2001), pp. 632–677. doi: 10.1006/jcph.2001.6800G. Fibich and S. Tsynkov. Numerical solution of the nonlinear Helmholtz equation using nonorthogonal expansions. J. Comput. Phys. 210 (2005), pp. 183–224. doi: 10.1016/j.jcp.2005.04.015P. M. Morse and K. U. Ingard. Theoretical Acoustics. International Series in Pure and Applied Physics. McGraw-Hill Book Company, 1968G. N. Watson. A treatise on the theory of Bessel functions. International Series in Pure and Applied Physics. Cambridge Mathematical Library, 1996. url: https://www.cambridge.org/au/universitypress/subjects/mathematics/real-and-complex-analysis/treatise-theory-bessel-functions-2nd-edition-1?format=PB&isbn=9780521483919  
    more » « less
  5. Abstract In this paper, we propose and analyze a finite-element method of variational data assimilation for a second-order parabolic interface equation on a two-dimensional bounded domain. The Tikhonov regularization plays a key role in translating the data assimilation problem into an optimization problem. Then the existence, uniqueness and stability are analyzed for the solution of the optimization problem. We utilize the finite-element method for spatial discretization and backward Euler method for the temporal discretization. Then based on the Lagrange multiplier idea, we derive the optimality systems for both the continuous and the discrete data assimilation problems for the second-order parabolic interface equation. The convergence and the optimal error estimate are proved with the recovery of Galerkin orthogonality. Moreover, three iterative methods, which decouple the optimality system and significantly save computational cost, are developed to solve the discrete time evolution optimality system. Finally, numerical results are provided to validate the proposed method. 
    more » « less