skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spectral, Tensor and Domain Decomposition Methods for Fractional PDEs
Abstract Fractional PDEs have recently found several geophysics and imaging science applications due to their nonlocal nature and their flexibility in capturing sharp transitions across interfaces.However, this nonlocality makes it challenging to design efficient solvers for such problems.In this paper, we introduce a spectral method based on an ultraspherical polynomial discretization of the Caffarelli–Silvestre extension to solve such PDEs on rectangular and disk domains.We solve the discretized problem using tensor equation solvers and thus can solve higher-dimensional PDEs.In addition, we introduce both serial and parallel domain decomposition solvers.We demonstrate the numerical performance of our methods on a 3D fractional elliptic PDE on a cube as well as an application to optimization problems with fractional PDE constraints.  more » « less
Award ID(s):
1913004 2110263
PAR ID:
10345726
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Computational Methods in Applied Mathematics
Volume:
0
Issue:
0
ISSN:
1609-4840
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Quantum computing has the potential to solve certain compute-intensive problems faster than classical computing by leveraging the quantum mechanical properties of superposition and entanglement. This capability can be particularly useful for solving Partial Differential Equations (PDEs), which are challenging to solve even for High-Performance Computing (HPC) systems, especially for multidimensional PDEs. This led researchers to investigate the usage of Quantum-Centric High-Performance Computing (QC-HPC) to solve multidimensional PDEs for various applications. However, the current quantum computing-based PDE-solvers, especially those based on Variational Quantum Algorithms (VQAs) suffer from limitations, such as low accuracy, long execution times, and limited scalability. In this work, we propose an innovative algorithm to solve multidimensional PDEs with two variants. The first variant uses Finite Difference Method (FDM), Classical-to-Quantum (C2Q) encoding, and numerical instantiation, whereas the second variant utilizes FDM, C2Q encoding, and Column-by-Column Decomposition (CCD). We evaluated the proposed algorithm using the Poisson equation as a case study and validated it through experiments conducted on noise-free and noisy simulators, as well as hardware emulators and real quantum hardware from IBM. Our results show higher accuracy, improved scalability, and faster execution times in comparison to variational-based PDE-solvers, demonstrating the advantage of our approach for solving multidimensional PDEs. 
    more » « less
  2. Abstract We consider the simulation of Bayesian statistical inverse problems governed by large-scale linear and nonlinear partial differential equations (PDEs). Markov chain Monte Carlo (MCMC) algorithms are standard techniques to solve such problems. However, MCMC techniques are computationally challenging as they require a prohibitive number of forward PDE solves. The goal of this paper is to introduce a fractional deep neural network (fDNN) based approach for the forward solves within an MCMC routine. Moreover, we discuss some approximation error estimates. We illustrate the efficiency of fDNN on inverse problems governed by nonlinear elliptic PDEs and the unsteady Navier–Stokes equations. In the former case, two examples are discussed, respectively depending on two and 100 parameters, with significant observed savings. The unsteady Navier–Stokes example illustrates that fDNN can outperform existing DNNs, doing a better job of capturing essential features such as vortex shedding. 
    more » « less
  3. Simulating the time evolution of Partial Differential Equations (PDEs) of large-scale systems is crucial in many scientific and engineering domains such as fluid dynamics, weather forecasting and their inverse optimization problems. However, both classical solvers and recent deep learning-based surrogate models are typically extremely computationally intensive, because of their local evolution: they need to update the state of each discretized cell at each time step during inference. Here we develop Latent Evolution of PDEs (LE-PDE), a simple, fast and scalable method to accelerate the simulation and inverse optimization of PDEs. LE-PDE learns a compact, global representation of the system and efficiently evolves it fully in the latent space with learned latent evolution models. LE-PDE achieves speedup by having a much smaller latent dimension to update during long rollout as compared to updating in the input space. We introduce new learning objectives to effectively learn such latent dynamics to ensure long-term stability. We further introduce techniques for speeding-up inverse optimization of boundary conditions for PDEs via backpropagation through time in latent space, and an annealing technique to address the non-differentiability and sparse interaction of boundary conditions. We test our method in a 1D benchmark of nonlinear PDEs, 2D Navier-Stokes flows into turbulent phase and an inverse optimization of boundary conditions in 2D Navier-Stokes flow. Compared to state-of-the-art deep learning-based surrogate models and other strong baselines, we demonstrate up to 128x reduction in the dimensions to update, and up to 15x improvement in speed, while achieving competitive accuracy. 
    more » « less
  4. Surrogate neural network-based partial differential equation (PDE) solvers have the potential to solve PDEs in an accelerated manner, but they are largely limited to systems featuring fixed domain sizes, geometric layouts, and boundary conditions. We propose Specialized Neural Accelerator-Powered Domain Decomposition Methods (SNAP-DDM), a DDM-based approach to PDE solving in which subdomain problems containing arbitrary boundary conditions and geometric parameters are accurately solved using an ensemble of specialized neural operators. We tailor SNAP-DDM to 2D electromagnetics and fluidic flow problems and show how innovations in network architecture and loss function engineering can produce specialized surrogate subdomain solvers with near unity accuracy. We utilize these solvers with standard DDM algorithms to accurately solve freeform electromagnetics and fluids problems featuring a wide range of domain sizes. 
    more » « less
  5. Numerically solving partial differential equations (PDEs) remains a compelling application of supercomputing resources. The next generation of computing resources - exhibiting increased parallelism and deep memory hierarchies - provide an opportunity to rethink how to solve PDEs, especially time dependent PDEs. Here, we consider time as an additional dimension and simultaneously solve for the unknown in large blocks of time (i.e. in 4D space-time), instead of the standard approach of sequential time-stepping. We discretize the 4D space-time domain using a mesh-free kD tree construction that enables good parallel performance as well as on-the-fly construction of adaptive 4D meshes. To best use the 4D space-time mesh adaptivity, we invoke concepts from PDE analysis to establish rigorous a posteriori error estimates for a general class of PDEs. We solve canonical linear as well as non-linear PDEs (heat diffusion, advection-diffusion, and Allen-Cahn) in space-time, and illustrate the following advantages: (a) sustained scaling behavior across a larger processor count compared to sequential time-stepping approaches, (b) the ability to capture "localized" behavior in space and time using the adaptive space-time mesh, and (c) removal of any time-stepping constraints like the Courant-Friedrichs-Lewy (CFL) condition, as well as the ability to utilize spatially varying time-steps. We believe that the algorithmic and mathematical developments along with efficient deployment on modern architectures shown in this work constitute an important step towards improving the scalability of PDE solvers on the next generation of supercomputers. 
    more » « less