skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Online Balanced Allocation of Dynamic Components
We introduce Online Balanced Allocation of Dynamic Components (OBADC), a problem motivated by the practical challenge of dynamic resource allocation for large-scale distributed applications. In OBADC, we need to allocate a dynamic set of at most k𝓁 vertices (representing processes) in 𝓁 > 0 clusters. We consider an over-provisioned setup in which each cluster can hold at most k(1+ε) vertices, for an arbitrary constant ε > 0. The communication requirements among the vertices are modeled by the notion of a dynamically changing component, which is a subset of vertices that need to be co-located in the same cluster. At each time t, a request r_t of one of the following types arrives: 1) insertion of a vertex v forming a singleton component v at unit cost. 2) merge of (u,v) requiring that the components containing u and v be merged and co-located thereafter. 3) deletion of an existing vertex v at zero cost. Before serving any request, an algorithm can migrate vertices from one cluster to another, at a unit migration cost per vertex. We seek an online algorithm to minimize the total migration cost incurred for an arbitrary request sequence σ = (r_t)_{t > 0}, while simultaneously minimizing the number of clusters utilized. We analyze competitiveness with respect to an optimal clairvoyant offline algorithm with identical (over-provisioned) capacity constraints. We give an O(log k)-competitive algorithm for OBADC, and a matching lower-bound. The number of clusters utilized by our algorithm is always within a (2+ε) factor of the minimum. Furthermore, in a resource augmented setting where the optimal offline algorithm is constrained to capacity k per cluster, our algorithm obtains O(log k) competitiveness and utilizes a number of clusters within (1+ε) factor of the minimum. We also consider OBADC in the context of machine-learned predictions, where for each newly inserted vertex v at time t: i) with probability η > 0, the set of vertices (that exist at time t) in the component of v is revealed and, ii) with probability 1-η, no information is revealed. For OBADC with predictions, we give a O(1)-consistent and O(min(log 1/(η), log k))-robust algorithm.  more » « less
Award ID(s):
2335187
PAR ID:
10650545
Author(s) / Creator(s):
;
Editor(s):
Meka, Raghu
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Volume:
325
ISSN:
1868-8969
Page Range / eLocation ID:
81:1-81:23
Subject(s) / Keyword(s):
online algorithms competitive ratio algorithms with predictions Theory of computation → Online algorithms
Format(s):
Medium: X Size: 23 pages; 932723 bytes Other: application/pdf
Size(s):
23 pages 932723 bytes
Sponsoring Org:
National Science Foundation
More Like this
  1. Aichholzer, Oswin; Wang, Haitao (Ed.)
    The 𝓁₂² min-sum k-clustering problem is to partition an input set into clusters C_1,…,C_k to minimize ∑_{i=1}^k ∑_{p,q ∈ C_i} ‖p-q‖₂². Although 𝓁₂² min-sum k-clustering is NP-hard, it is not known whether it is NP-hard to approximate 𝓁₂² min-sum k-clustering beyond a certain factor. In this paper, we give the first hardness-of-approximation result for the 𝓁₂² min-sum k-clustering problem. We show that it is NP-hard to approximate the objective to a factor better than 1.056 and moreover, assuming a balanced variant of the Johnson Coverage Hypothesis, it is NP-hard to approximate the objective to a factor better than 1.327. We then complement our hardness result by giving a fast PTAS for 𝓁₂² min-sum k-clustering. Specifically, our algorithm runs in time O(n^{1+o(1)}d⋅ 2^{(k/ε)^O(1)}), which is the first nearly linear time algorithm for this problem. We also consider a learning-augmented setting, where the algorithm has access to an oracle that outputs a label i ∈ [k] for input point, thereby implicitly partitioning the input dataset into k clusters that induce an approximately optimal solution, up to some amount of adversarial error α ∈ [0,1/2). We give a polynomial-time algorithm that outputs a (1+γα)/(1-α)²-approximation to 𝓁₂² min-sum k-clustering, for a fixed constant γ > 0. 
    more » « less
  2. Bojańczyk, Mikołaj; Merelli, Emanuela; Woodruff, David P (Ed.)
    Given n points in 𝓁_p^d, we consider the problem of partitioning points into k clusters with associated centers. The cost of a clustering is the sum of p-th powers of distances of points to their cluster centers. For p ∈ [1,2], we design sketches of size poly(log(nd),k,1/ε) such that the cost of the optimal clustering can be estimated to within factor 1+ε, despite the fact that the compressed representation does not contain enough information to recover the cluster centers or the partition into clusters. This leads to a streaming algorithm for estimating the clustering cost with space poly(log(nd),k,1/ε). We also obtain a distributed memory algorithm, where the n points are arbitrarily partitioned amongst m machines, each of which sends information to a central party who then computes an approximation of the clustering cost. Prior to this work, no such streaming or distributed-memory algorithm was known with sublinear dependence on d for p ∈ [1,2). 
    more » « less
  3. Megow, Nicole; Smith, Adam (Ed.)
    In this paper, we study the weighted k-server problem on the uniform metric in both the offline and online settings. We start with the offline setting. In contrast to the (unweighted) k-server problem which has a polynomial-time solution using min-cost flows, there are strong computational lower bounds for the weighted k-server problem, even on the uniform metric. Specifically, we show that assuming the unique games conjecture, there are no polynomial-time algorithms with a sub-polynomial approximation factor, even if we use c-resource augmentation for c < 2. Furthermore, if we consider the natural LP relaxation of the problem, then obtaining a bounded integrality gap requires us to use at least 𝓁 resource augmentation, where 𝓁 is the number of distinct server weights. We complement these results by obtaining a constant-approximation algorithm via LP rounding, with a resource augmentation of (2+ε)𝓁 for any constant ε > 0. In the online setting, an exp(k) lower bound is known for the competitive ratio of any randomized algorithm for the weighted k-server problem on the uniform metric. In contrast, we show that 2𝓁-resource augmentation can bring the competitive ratio down by an exponential factor to only O(𝓁² log 𝓁). Our online algorithm uses the two-stage approach of first obtaining a fractional solution using the online primal-dual framework, and then rounding it online. 
    more » « less
  4. null (Ed.)
    Directed Steiner Tree (DST) is a central problem in combinatorial optimization and theoretical computer science: Given a directed graph G = (V, E) with edge costs c ∈ ℝ_{≥ 0}^E, a root r ∈ V and k terminals K ⊆ V, we need to output a minimum-cost arborescence in G that contains an rrightarrow t path for every t ∈ K. Recently, Grandoni, Laekhanukit and Li, and independently Ghuge and Nagarajan, gave quasi-polynomial time O(log²k/log log k)-approximation algorithms for the problem, which are tight under popular complexity assumptions. In this paper, we consider the more general Degree-Bounded Directed Steiner Tree (DB-DST) problem, where we are additionally given a degree bound d_v on each vertex v ∈ V, and we require that every vertex v in the output tree has at most d_v children. We give a quasi-polynomial time (O(log n log k), O(log² n))-bicriteria approximation: The algorithm produces a solution with cost at most O(log nlog k) times the cost of the optimum solution that violates the degree constraints by at most a factor of O(log²n). This is the first non-trivial result for the problem. While our cost-guarantee is nearly optimal, the degree violation factor of O(log²n) is an O(log n)-factor away from the approximation lower bound of Ω(log n) from the Set Cover hardness. The hardness result holds even on the special case of the Degree-Bounded Group Steiner Tree problem on trees (DB-GST-T). With the hope of closing the gap, we study the question of whether the degree violation factor can be made tight for this special case. We answer the question in the affirmative by giving an (O(log nlog k), O(log n))-bicriteria approximation algorithm for DB-GST-T. 
    more » « less
  5. Ene, Alina; Chattopadhyay, Eshan (Ed.)
    We study the classic Max-Cut problem under multiple cardinality constraints, which we refer to as the Constrained Max-Cut problem. Given a graph G = (V, E), a partition of the vertices into c disjoint parts V₁, …, V_c, and cardinality parameters k₁, …, k_c, the goal is to select a set S ⊆ V such that |S ∩ V_i| = k_i for each i ∈ [c], maximizing the total weight of edges crossing S (i.e., edges with exactly one endpoint in S).\r\nBy designing an approximate kernel for Constrained Max-Cut and building on the correlation rounding technique of Raghavendra and Tan (2012), we present a (0.858 - ε)-approximation algorithm for the problem when c = O(1). The algorithm runs in time O(min{k/ε, n}^poly(c/ε) + poly(n)), where k = ∑_{i∈[c]} k_i and n = |V|. This improves upon the (1/2 + ε₀)-approximation of Feige and Langberg (2001) for Max-Cut_k (the special case when c = 1, k₁ = k), and generalizes the (0.858 - ε)-approximation of Raghavendra and Tan (2012), which only applies when min{k,n-k} = Ω(n) and does not handle multiple constraints.\r\nWe also establish that, for general values of c, it is NP-hard to determine whether a feasible solution exists that cuts all edges. Finally, we present a 1/2-approximation algorithm for Max-Cut under an arbitrary matroid constraint. 
    more » « less