Over the last decade, scientists have begun to model CNS development, function, and disease in vitro using human pluripotent stem cell (hPSC)-derived organoids. Using traditional protocols, these 3D tissues are generated by combining the innate emergent properties of differentiating hPSC aggregates with a bioreactor environment that induces interstitial transport of oxygen and nutrients and an optional supportive hydrogel extracellular matrix (ECM). During extended culture, the hPSC-derived neural organoids (hNOs) obtain millimeterscale sizes with internal microscale cytoarchitectures, cellular phenotypes, and neuronal circuit behaviors mi-metic of those observed in the developing brain, eye, or spinal cord. Early studies evaluated the cytoarchitectural and phenotypical character of these organoids and provided unprecedented insight into the morphogenetic processes that govern CNS development. Comparisons to human fetal tissues revealed their significant simila-rities and differences. While hNOs have current disease modeling applications and significant future promise, their value as anatomical and physiological models is limited because they fail to form reproducibly and re-capitulate more mature in vivo features. These include biomimetic macroscale tissue morphology, positioning of morphogen signaling centers to orchestrate appropriate spatial organization and intra- and inter-connectivity of discrete tissue regions, maturation of physiologically relevant neural circuits, and formation of vascular net-works that can support sustained in vitro tissue growth. To address these inadequacies scientists have begun to integrate organoid culture with bioengineering techniques and methodologies including genome editing, bio-materials, and microfabricated and microfluidic platforms that enable spatiotemporal control of cellular differentiation or the biochemical and biophysical cues that orchestrate organoid morphogenesis. This review will examine recent advances in hNO technologies and culture strategies that promote reproducible in vitro morphogenesis and greater biomimicry in structure and function.
more »
« less
This content will become publicly available on November 1, 2026
Morphogen Patterning in Dynamic Tissues
Embryogenesis integrates morphogenesis—coordinated cell movements—with morphogen patterning and cell differentiation. While largely studied independently, morphogenesis and patterning often unfold simultaneously in early embryos. Yet how cell movements affect morphogen transport and cells' exposure over time remains unclear, as most pattern formation models assume static tissues. Here we develop a theoretical framework for morphogen patterning in dynamic tissues, recasting advection-reaction-diffusion equations in the cells' moving reference frames. This framework (i) elucidates how morphogenesis mediates morphogen transport and compartmentalization: cell-cell diffusive transport is enhanced at multicellular flow attractors, while repellers act as barriers, affecting cell fate induction and bifurcations. (ii) It formalizes cell-cell signaling ranges in dynamic tissues, deconfounding morphogenetic movements to identify which cells could communicate via morphogens. (iii) It provides two new nondimensional numbers to assess when and where morphogenesis affects morphogen transport. We demonstrate this framework by analyzing classical patterning models with common morphogenetic motifs as well as experimental tissue flows. Our work rationalizes dynamic tissue patterning in development, constraining candidate patterning mechanisms and parameters using accessible cell motion data.
more »
« less
- Award ID(s):
- 2443851
- PAR ID:
- 10650546
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- PRX Life
- Volume:
- 3
- Issue:
- 4
- ISSN:
- 2835-8279
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Markers for the endoderm and mesoderm germ layers are commonly expressed together in the early embryo, potentially reflecting cells’ ability to explore potential fates before fully committing. It remains unclear when commitment to a single-germ layer is reached and how it is impacted by external signals. Here, we address this important question in Drosophila , a convenient model system in which mesodermal and endodermal fates are associated with distinct cellular movements during gastrulation. Systematically applying endoderm-inducing extracellular signal-regulated kinase (ERK) signals to the ventral medial embryo—which normally only receives a mesoderm-inducing cue—reveals a critical time window during which mesodermal cell movements and gene expression are suppressed by proendoderm signaling. We identify the ERK target gene huckebein ( hkb ) as the main cause of the ventral furrow suppression and use computational modeling to show that Hkb repression of the mesoderm-associated gene snail is sufficient to account for a broad range of transcriptional and morphogenetic effects. Our approach, pairing precise signaling perturbations with observation of transcriptional dynamics and cell movements, provides a general framework for dissecting the complexities of combinatorial tissue patterning.more » « less
-
Embryonic development is a complex phenomenon that integrates genetic regulation and biomechanical cellular behaviors. However, the relative influence of these factors on spatiotemporal morphogen distributions is not well understood. Bone Morphogenetic Proteins (BMPs) are the primary morphogens guiding the dorsal-ventral (DV) patterning of the early zebrafish embryo, and BMP signaling is regulated by a network of extracellular and intracellular factors that impact the range and signaling of BMP ligands. Recent advances in understanding the mechanism of pattern formation support a source-sink mechanism, however, it is not clear how the source-sink mechanism shapes the morphogen patterns in three-dimensional (3D) space, nor how sensitive the pattern is to biophysical rates and boundary conditions along both the anteroposterior (AP) and DV axes of the embryo, nor how the patterns are controlled over time. Throughout blastulation and gastrulation, major cell movement, known as epiboly, happens along with the BMP-mediated DV patterning. The layer of epithelial cells begins to thin as they spread toward the vegetal pole of the embryo until it has completely engulfed the yolk cell. This dynamic domain may influence the distributions of BMP network members through advection. We developed a Finite Element Model (FEM) that incorporates all stages of zebrafish embryonic development data and solves the advection-diffusion-reaction Partial Differential Equations (PDE) in a growing domain. We use the model to investigate mechanisms in underlying BMP-driven DV patterning during epiboly. Solving the PDE is computationally expensive for parameter exploration. To overcome this obstacle, we developed a Neural Network (NN) metamodel of the 3D embryo that is accurate and fast and provided a nonlinear map between high-dimensional input and output that replaces the direct numerical simulation of the PDEs. From the modeling and acceleration by the NN metamodels, we identified the impact of advection on patterning and the influence of the dynamic expression level of regulators on the BMP signaling network.more » « less
-
Eukaryotic cells in living tissues form dynamic patterns with spatially varying orientational order that affects important physiological processes such as apoptosis and cell migration. The challenge is how to impart a predesigned map of orientational order onto a growing tissue. Here, we demonstrate an approach to produce cell monolayers of human dermal fibroblasts with predesigned orientational patterns and topological defects using a photoaligned liquid crystal elastomer (LCE) that swells anisotropically in an aqueous medium. The patterns inscribed into the LCE are replicated by the tissue monolayer and cause a strong spatial variation of cells phenotype, their surface density, and number density fluctuations. Unbinding dynamics of defect pairs intrinsic to active matter is suppressed by anisotropic surface anchoring allowing the estimation of the elastic characteristics of the tissues. The demonstrated patterned LCE approach has potential to control the collective behavior of cells in living tissues, cell differentiation, and tissue morphogenesis.more » « less
-
The temporal dynamics of morphogen presentation impacts transcriptional responses and tissue patterning (1). However, the mechanisms controlling morphogen release are far from clear. We found that inwardly rectifying potassium (Irk) channels regulate endogenous transient increases in intracellular calcium and Bone Morphogenetic Protein (BMP/Dpp) release for Drosophila wing development (2). Inhibition of Irk channels reduces BMP/Dpp signaling, and ultimately disrupts wing morphology (2, 3). Ion channels impact development of several tissues and organisms in which BMP signaling is essential (2-15). In neurons and pancreatic beta cells, Irk channels modulate membrane potential to affect intracellular Ca++ to control secretion of neurotransmitters and insulin (15-21). Based on Irk activity in neurons, we hypothesized that electrical activity controls endoplasmic reticulum Ca++ release into the cytoplasm to regulate the release of BMP. To test this hypothesis, we reduced expression of proteins that control endoplasmic reticulum calcium (Stim, Orai, SERCA, SK, and Best2) and documented wing phenotypes. We found that reduced Stim and SERCA function decreases amplitude and frequency of endogenous calcium transients in the wing disc and reduced Dpp/BMP release in the wing disc. Together, our results suggest control of endoplasmic reticulum is required for Dpp/BMP release.more » « less
An official website of the United States government
