This paper presents a second-order, implicit numerical model for one-dimensional, large strain thaw consolidation of ice-rich, fine-grained permafrost. The phase composition of permafrost at sub-freezing temperatures is determined using an unfrozen water content model that accounts for both capillary and adsorptive unfrozen water. The model incorporates secondary compression to improve the accuracy of long-term thaw consolidation simulations. The algorithm incorporates conduction, advection, and phase change in heat transfer and simultaneous occurrence of primary consolidation and secondary compression. Benchmarking and verification of the model show good agreement with existing numerical models. The proposed model is validated against experimental observations. The model indicates that adsorbed unfrozen water dominates over a wide range of sub-freezing temperatures, while capillary unfrozen water freezes at temperatures just below the freezing point. Numerical simulations suggest that ignoring secondary compression can lead to underestimation of excess pore pressure and settlement during both thaw and post-thaw consolidation. Void ratio and average degree of consolidation are overestimated when secondary compression is not considered. The effect of secondary compression on excess pore pressure and void ratio during thawing becomes more pronounced in thicker, field-scale permafrost layers. Results from this study highlight the importance of considering adsorptive and capillary unfrozen water to determine permafrost composition and incorporating secondary compression in thaw consolidation modeling and thaw settlement estimation for long-term civil infrastructure planning in cold regions. The proposed model provides a comprehensive framework for simulating thaw consolidation processes in permafrost regions.
more »
« less
This content will become publicly available on January 1, 2027
Creep Deformation and Long-Term Strength of Ice-Rich Permafrost in Northern Alaska
The degradation of permafrost alters deformation and long-term strength, posing challenges to existing and future civil infrastructure in Northern Alaska. Long-term strength is a critical parameter in the design of civil projects; yet, to our best knowledge, data on the creep deformation and long-term strength of undisturbed permafrost in Northern Alaska remain limited. Soil particle fraction, unfrozen water content, temperature, and salinity may interactively affect creep deformation and long-term strength of permafrost; however, their interactive effects are not well understood. In this study, field samples of relatively undisturbed permafrost from the upper 1.5 m of the Arctic Coastal Plain near Utqiaġvik, Alaska, were first retrieved and analyzed. The permafrost was characterized as saline ice-rich silty sand and nonuniformly distributed ice. We conducted constant stress creep tests, unconfined compression strength tests, and unfrozen water content tests to assess the mechanical and physical properties of the permafrost cores. The results indicated that the long-term strength of the permafrost decreased by nearly 90% from −10°C to −2°C. At −10°C, the long-term strength increased by approximately 120% as the soil particle fraction rose from 0.14 to 0.26. The strengthening effect of soil particles diminished at higher temperatures and higher salinity due to the influence of unfrozen water. A quantitative tool has been developed to predict the long-term strength of ice-rich permafrost, incorporating the effects of soil particle fraction and temperature. The findings of this study can potentially support infrastructure design and planning in Northern Alaska in the context of a warming climate.
more »
« less
- PAR ID:
- 10650586
- Publisher / Repository:
- American Society of Civil Engineers
- Date Published:
- Journal Name:
- Journal of Geotechnical and Geoenvironmental Engineering
- Volume:
- 152
- Issue:
- 1
- ISSN:
- 1090-0241
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Permafrost degradation in Arctic lowlands is a critical geomorphic process, increasingly driven by climate warming and infrastructure development. This study applies an integrated geophysical and surveying approach – Electrical Resistivity Tomography (ERT), Ground Penetrating Radar (GPR), and thaw probing – to characterize near-surface permafrost variability across four land use types in Utqiaġvik, Alaska: gravel road, snow fence, residential building and undisturbed tundra. Results reveal pronounced heterogeneity in thaw depths (0.2 to >1 m) and ice content, shaped by both natural features such as ice wedges and frost heave and anthropogenic disturbances. Roads and snow fences altered surface drainage and snow accumulation, promoting differential thaw, deeper active layers, and localized ground deformation. Buildings in permafrost regions alter the local thermal regime through multiple interacting factors – for example, solar radiation, thermal leakage, snow cover dynamics, and surface disturbance – among others. ERT identified high-resistivity zones (>1,000 Ω·m) interpreted as ice-rich permafrost and low-resistivity features (<5 Ω·m) likely associated with cryopegs or thaw zones. GPR delineated subsurface stratigraphy and supported interpretation of ice-rich layers and permafrost features. These findings underscore the strong spatial coupling between surface infrastructure and subsurface thermal and hydrological regimes in ice-rich permafrost. Geophysical methods revealed subsurface features and thaw depth variations across different land use types in Utqiaġvik, highlighting how infrastructure alters permafrost conditions. These findings support localized assessment of ground stability in Arctic environments.more » « less
-
Abstract Almost half of the global terrestrial soil carbon (C) is stored in the northern circumpolar permafrost region, where air temperatures are increasing two times faster than the global average. As climate warms, permafrost thaws and soil organic matter becomes vulnerable to greater microbial decomposition. Long‐term soil warming of ice‐rich permafrost can result in thermokarst formation that creates variability in environmental conditions. Consequently, plant and microbial proportional contributions to ecosystem respiration may change in response to long‐term soil warming. Natural abundance δ13C and Δ14C of aboveground and belowground plant material, and of young and old soil respiration were used to inform a mixing model to partition the contribution of each source to ecosystem respiration fluxes. We employed a hierarchical Bayesian approach that incorporated gross primary productivity and environmental drivers to constrain source contributions. We found that long‐term experimental permafrost warming introduced a soil hydrology component that interacted with temperature to affect old soil C respiration. Old soil C loss was suppressed in plots with warmer deep soil temperatures because they tended to be wetter. When soil volumetric water content significantly decreased in 2018 relative to 2016 and 2017, the dominant respiration sources shifted from plant aboveground and young soil respiration to old soil respiration. The proportion of ecosystem respiration from old soil C accounted for up to 39% of ecosystem respiration and represented a 30‐fold increase compared to the wet‐year average. Our findings show that thermokarst formation may act to moderate microbial decomposition of old soil C when soil is highly saturated. However, when soil moisture decreases, a higher proportion of old soil C is vulnerable to decomposition and can become a large flux to the atmosphere. As permafrost systems continue to change with climate, we must understand the thresholds that may propel these systems from a C sink to a source.more » « less
-
Abstract The impact of permafrost thaw on hydrologic, thermal, and biotic processes remains uncertain, in part due to limitations in subsurface measurement capabilities. To better understand subsurface processes in thermokarst environments, we collocated geophysical and biogeochemical instruments along a thaw gradient between forested permafrost and collapse‐scar bogs at the Alaska Peatland Experiment site near Fairbanks, Alaska. Ambient seismic noise monitoring provided continuous high‐temporal resolution measurements of water and ice saturation changes. Maps of seismic velocity change identified areas of large summertime velocity reductions nearest the youngest bog, indicating potential thaw and expansion at the bog margin. These results corresponded well with complementary borehole nuclear magnetic resonance measurements of unfrozen water content with depth, which showed permafrost soils nearest the bog edges contained the largest amount of unfrozen water along the study transect, up to 25% by volume. In situ measurements of methane within permafrost soils revealed high concentrations at these bog‐edge locations, up to 30% soil gas. Supra‐permafrost talik zones were observed at the bog margins, indicating talik formation and perennial liquid water may drive lateral bog expansion and enhanced permafrost carbon losses preceding thaw. Comparison of seismic monitoring with wintertime surface carbon dioxide fluxes revealed differential responses depending on time and proximity to the bogs, capturing the controlling influence of subsurface water and ice on microbial activity and surficial emissions. This study demonstrates a multidisciplinary approach for gaining new understanding of how subsurface physical properties influence greenhouse gas production, emissions, and thermokarst development.more » « less
-
Permafrost, as an important part of the Cryosphere, has been strongly affected by climate warming, and a wide spread of permafrost responses to the warming is currently observed. In particular, at some locations rather slow rates of permafrost degradations are noticed. We related this behavior to the presence of unfrozen water in frozen fine‐grained earth material. In this paper, we examine not‐very‐commonly‐discussed heat flux from the ground surface into the permafrost and consequently discuss implications of the presence of unfrozen liquid water on long‐term thawing of permafrost. We conducted a series of numerical experiments and demonstrated that the presence of fine‐grained material with substantial unfrozen liquid water content at below 0°C temperature can significantly slow down the thawing rate and hence can increase resilience of permafrost to the warming events. This effect is highly nonlinear, and a difference between the rates of thawing in fine‐ and coarse‐grained materials is more drastic for lower values of heat flux incoming into permafrost. For high heat flux, the difference between these rates almost disappears. As near‐surface permafrost temperature increases towards 0°C and the changes in the ground temperature become less evident, the future observation networks should try to incorporate measurements of unfrozen liquid water content in the near‐surface permafrost and heat flux into permafrost in addition to the existing temperature observations.more » « less
An official website of the United States government
