skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 20, 2026

Title: Impedance-based biosensor for rapid detection and identification of Salmonella in turkey products
This study presents the development of a highly sensitive microfluidic-based impedance biosensor designed for rapid detection and identification of Salmonella Infantis in raw turkey samples, with a limit of detection (LOD) as low as 1 CFU/ml in 70 minutes detection time. The biosensor is equipped with novel focusing and trapping regions, significantly enhancing its sensitivity by concentrating and trapping Salmonella cells in the detection region. Salmonella cells labeled with fluorescent dyes were used to validate the functionality of the focusing and trapping mechanism, confirming the biosensor's ability to concentrate and trap Salmonella cells.  more » « less
Award ID(s):
2236622 2344877
PAR ID:
10650696
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Editor(s):
Rapp, Bastian E; Dalton, Colin
Publisher / Repository:
SPIE
Date Published:
Page Range / eLocation ID:
29
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents an investigation of a fluidic-based impedance biosensor for rapid and accurate detection of Salmonella Typhimurium in raw chicken carcass rinsate. The biosensor is engineered with multiple distinct regions that concentrates Salmonella antigens to a detectable level, subsequently trapping the concentrated Salmonella samples on top of the detection interdigitated electrode array coated with a specific Salmonella antibody, maximizing the number of captured antigens. Detection is achieved through the antibody-antigen binding process, where binding events changes impedance values, providing a reliable method for identifying and quantifying Salmonella. The biosensor demonstrated a low limit of detection (LOD) of 1–2 cells/ml within 40–50 min. The findings demonstrated that the biosensor distinguishes low concentrations of live Salmonella cells, even in the presence of high concentrations of dead Salmonella cells, and non-specific binding pathogens viz., Listeria monocytogenes and E. coli O157:H7. 
    more » « less
  2. Double-stranded (ds) biosensors are homogeneous oligonucleotide probes for detection of nucleic acid sequences in biochemical assays and live cell imaging. Locked nucleic acid (LNA) modification can be incorporated in the biosensors to enhance the binding affinity, specificity, and resistance to nuclease degradation. However, LNA monomers in the quencher sequence can also prevent the target-fluorophore probe binding, which reduces the signal of the dsLNA biosensor. This study investigates the influence of LNA modification on dsLNA biosensors by altering the position and amount of LNA monomers present in the quencher sequence. We characterize the fluorophore–quencher interaction, target detection, and specificity of the biosensor in free solution and evaluate the performance of the dsLNA biosensor in 2D monolayers and 3D spheroids. The data indicate that a large amount of LNA monomers in the quencher sequence can enhance the specificity of the biosensor, but prevents effective target binding. Together, our results provide guidelines for improving the performance of dsLNA biosensors in nucleic acid detection and gene expression analysis in live cells. 
    more » « less
  3. Abstract The significance of easily detecting rare earth elements (REEs) has increased due to the growing demand for REEs. Addressing this need, we present an innovative electrochemical biosensor, focusing on cerium as a model REE. This biosensor utilizes a modified EF‐hand loop peptide sequence, incorporating cysteine for covalent attachment to a gold working electrode and tyrosine as an electrochemically active amino acid. The sensor was designed such that binding to cerium induces a conformational change in the peptide, affecting tyrosine's proximity to the electrode surface, modulating the current. A calibration curve was generated from cyclic voltammetry current peaks at ~0.55–0.65 V versus a silver pseudo‐reference electrode, with cerium concentrations ranging from 0 to 67 μM in artificial urine. The sensor exhibited a biologically relevant limit of detection of 35 μM and a sensitivity of −0.0024 ± 0.002 (μA μM)−1. These findings offer insights into designing peptide sequences for electrochemical biosensing. 
    more » « less
  4. IntroductionImmunotherapies have shown great promise, but are not effective for all tumors types and are effective in less than 3% of patients with pancreatic ductal adenocarcinomas (PDAC). To make an immune treatment that is effective for more cancer patients and those with PDAC specifically, we genetically engineered Salmonella to deliver exogenous antigens directly into the cytoplasm of tumor cells. We hypothesized that intracellular delivery of an exogenous immunization antigen would activate antigen-specific CD8 T cells and reduce tumors in immunized mice. MethodsTo test this hypothesis, we administered intracellular delivering (ID) Salmonella that deliver ovalbumin as a model antigen into tumor-bearing, ovalbumin-vaccinated mice. ID Salmonella delivers antigens by autonomously lysing in cells after the induction of cell invasion. ResultsWe showed that the delivered ovalbumin disperses throughout the cytoplasm of cells in culture and in tumors. This delivery into the cytoplasm is essential for antigen cross-presentation. We showed that co-culture of ovalbumin-recipient cancer cells with ovalbumin-specific CD8 T cells triggered a cytotoxic T cell response. After the adoptive transfer of OT-I CD8 T cells, intracellular delivery of ovalbumin reduced tumor growth and eliminated tumors. This effect was dependent on the presence of the ovalbumin-specific T cells. Following vaccination with the exogenous antigen in mice, intracellular delivery of the antigen cleared 43% of established KPC pancreatic tumors, increased survival, and prevented tumor re-implantation. DiscussionThis response in the immunosuppressive KPC model demonstrates the potential to treat tumors that do not respond to checkpoint inhibitors, and the response to re-challenge indicates that new immunity was established against intrinsic tumor antigens. In the clinic, ID Salmonella could be used to deliver a protein antigen from a childhood immunization to refocus pre-existing T cell immunity against tumors. As an off-the-shelf immunotherapy, this bacterial system has the potential to be effective in a broad range of cancer patients. 
    more » « less
  5. null (Ed.)
    Fluorescence resonance energy transfer (FRET)-based biosensors have advanced live cell imaging by dynamically visualizing molecular events with high temporal resolution. FRET-based biosensors with spectrally distinct fluorophore pairs provide clear contrast between cells during dual FRET live cell imaging. Here, we have developed a new FRET-based Ca2+ biosensor using EGFP and FusionRed fluorophores (FRET-GFPRed). Using different filter settings, the developed biosensor can be differentiated from a typical FRET-based Ca2+ biosensor with ECFP and YPet (YC3.6 FRET Ca2+ biosensor, FRET-CFPYPet). A high-frequency ultrasound (HFU) with a carrier frequency of 150 MHz can target a subcellular region due to its tight focus smaller than 10 µm. Therefore, HFU offers a new single cell stimulations approach for FRET live cell imaging with precise spatial resolution and repeated stimulation for longitudinal studies. Furthermore, the single cell level intracellular delivery of a desired FRET-based biosensor into target cells using HFU enables us to perform dual FRET imaging of a cell pair. We show that a cell pair is defined by sequential intracellular delivery of the developed FRET-GFPRed and FRET-CFPYPet into two target cells using HFU. We demonstrate that a FRET-GFPRed exhibits consistent 10–15% FRET response under typical ionomycin stimulation as well as under a new stimulation strategy with HFU. 
    more » « less