skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 6, 2026

Title: Causal network and dynamic synchronization of urban thermal environment
Urban heat is a growing concern especially under global climate change and continuous urbanization. However, the understanding of its spatiotemporal propagation behaviours remains limited. In this study, we leverage a data-driven modelling framework that integrates causal inference, network topology analysis and dynamic synchronization to investigate the structure and evolution of temperature-based causal networks across the continental United States. We perform the first systematic comparison of causal networks constructed using warm-season daytime and nighttime air temperature anomalies in urban and surrounding rural areas. Results suggest strong spatial coherence of network links, especially during nighttime, and small-world properties across all cases. In addition, urban heat dynamics becomes increasingly synchronized across cities over time, particularly for maximum air temperature. Different network centrality measures consistently identify the Great Lakes region as a key mediator for spreading and mediating heat perturbations. This system-level analysis provides new insights into the spatial organization and dynamic behaviours of urban heat in a changing climate.  more » « less
Award ID(s):
2327435
PAR ID:
10650731
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
The Royal Society
Date Published:
Journal Name:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume:
383
Issue:
2308
ISSN:
1364-503X
Page Range / eLocation ID:
20250041
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract High nighttime urban air temperatures increase health risks and economic vulnerability of people globally. While recent studies have highlighted nighttime heat mitigation effects of urban vegetation, the magnitude and variability of vegetation-derived urban nighttime cooling differs greatly among cities. We hypothesize that urban vegetation-derived nighttime air cooling is driven by vegetation density whose effect is regulated by aridity through increasing transpiration. We test this hypothesis by deploying microclimate sensors across eight United States cities and investigating relationships of nighttime air temperature and urban vegetation throughout a summer season. Urban vegetation decreased nighttime air temperature in all cities. Vegetation cooling magnitudes increased as a function of aridity, resulting in the lowest cooling magnitude of 1.4 °C in the most humid city, Miami, FL, and 5.6 °C in the most arid city, Las Vegas, NV. Consistent with the differences among cities, the cooling effect increased during heat waves in all cities. For cities that experience a summer monsoon, Phoenix and Tucson, AZ, the cooling magnitude was larger during the more arid pre-monsoon season than during the more humid monsoon period. Our results place the large differences among previous measurements of vegetation nighttime urban cooling into a coherent physiological framework dependent on plant transpiration. This work informs urban heat risk planning by providing a framework for using urban vegetation as an environmental justice tool and can help identify where and when urban vegetation has the largest effect on mitigating nighttime temperatures. 
    more » « less
  2. Abstract Global climate change has been shown to cause longer, more intense, and frequent heatwaves, of which anthropogenic stressors concentrated in urban areas are a critical contributor. In this study, we investigate the causal interactions during heatwaves across 520 urban sites in the U.S. combining complex network and causal analysis. The presence of regional mediators is manifest in the constructed causal networks, together with long-range teleconnections. More importantly, megacities, such as New York City and Chicago, are causally connected with most of other cities and mediate the structure of urban networks during heatwaves. We also identified a significantly positive correlation between the causality strength and the total populations in megacities. These findings corroborate the contribution of human activities e.g., anthropogenic emissions of greenhouse gases or waste heat, to urban heatwaves. The emergence of teleconnections and supernodes are informative for the prediction and adaptation to heatwaves under global climate change. 
    more » « less
  3. Abstract The two-resistance mechanism (TRM) attribution method, which was designed to analyze the urban–rural contrast of temperature, is improved to study the urban–rural contrast of heat stress. The improved method can be applied to diagnosing any heat stress index that is a function of temperature and humidity. As an example, in this study we use it to analyze the summertime urban–rural contrast of simplified wet bulb globe temperature (SWBGT) simulated by the Geophysical Fluid Dynamics Laboratory land model coupled with an urban canopy model. We find that the urban–rural contrast of SWBGT is primarily caused by the lack of evapotranspiration in urban areas during the daytime and the release of heat storage during the nighttime, with the urban–rural differences in aerodynamic features playing either positive or negative roles depending on the background climate. Compared to the magnitude of the urban–rural contrast of temperature, the magnitude of the urban–rural contrast of SWBGT is damped due to the moisture deficits in urban areas. We further find that the urban–rural contrast of 2-m air temperature/SWBGT is fundamentally different from that of canopy air temperature/SWBGT. Turbulent mixing in the surface layer leads to much smaller urban–rural contrasts of 2-m air temperature/SWBGT than their canopy air counterparts. Significance Statement Heat leads to serious public health concerns, but urban and rural areas have different levels of heat stress. Our study explains the magnitude and pattern of the simulated urban–rural contrast in heat stress at the global scale and improves an attribution method to quantify which biophysical processes are mostly responsible for the simulated urban–rural contrast in heat stress. We highlight two well-known causes of higher heat stress in cities: the lack of evapotranspiration and the stronger release of heat storage. Meanwhile, we draw attention to the vegetation types in rural areas, which determine the urban–rural difference in surface roughness and significantly affect the urban–rural difference in heat stress. Last, we find the urban–rural contrasts of 2-m air temperature/SWBGT are largely reduced relative to their canopy air counterparts due to the turbulent mixing effect. 
    more » « less
  4. Abstract Many cities are experiencing increases in extreme heat because of global temperature rise combined with the urban heat island effect. The heterogeneity of urban morphology also leads to fine-scale variability in potential for heat exposure. Yet, how this rise in temperature and local variability together impacts urban residents differently at exposure-relevant scales is still not clear. Here we map the Universal Thermal Climate Index, a more complete indicator of human heat stress at an unprecedentedly fine spatial resolution (1 m), for 14 major cities in the United States using urban microclimate modeling. We examined the different heat exposure levels across different socioeconomic and racial/ethnic groups in these cities, finding that income level is most consistently associated with heat stress. We further conducted scenario simulations for a hypothetical 1 °C increase of air temperature in all cities. Results show that a 1 °C increase would have a substantial impact on human heat stress, with impacts that differ across cities. The results of this study can help us better evaluate the impact of extreme heat on urban residents at decision-relevant scales. 
    more » « less
  5. Abstract Continued climate change is increasing the frequency, severity, and duration of populations’ high temperature exposures. Indoor cooling is a key adaptation, especially in urban areas, where heat extremes are intensified—the urban heat island effect (UHI)—making residential air conditioning (AC) availability critical to protecting human health. In the United States, the differences in residential AC prevalence from one metropolitan area to another is well understood, but its intra-urban variation is poorly characterized, obscuring neighborhood-scale variability in populations’ heat vulnerability and adaptive capacity. We address this gap by constructing empirically derived probabilities of residential AC for 45,995 census tracts across 115 metropolitan areas. Within cities, AC is unequally distributed, with census tracts in the urban “core” exhibiting systematically lower prevalence than their suburban counterparts. Moreover, this disparity correlates strongly with multiple indicators of social vulnerability and summer daytime surface UHI intensity, highlighting the challenges that vulnerable urban populations face in adapting to climate-change driven heat stress amplification. 
    more » « less