A recent global QCD analysis of jet production and other polarized scattering data has found the presence of negative solutions for the gluon helicity distribution in the proton, Δ𝑔, along with the traditional Δ𝑔>0 solutions. We consider polarized semi-inclusive deep-inelastic scattering for hadrons produced with large transverse momentum as a means of constraining the dependence of Δ𝑔 on the parton momentum fraction, 𝑥. Focusing on the double longitudinal spin asymmetry, we identify the kinematics relevant for future experiments at Jefferson Lab and the Electron-Ion Collider that are particularly sensitive to the polarized gluon channel and could discriminate between the different Δ𝑔 behaviors. We find that a ∼20 GeV beam at the high luminosity Jefferson Lab may be especially well-suited for discriminating between the positive and negative solutions.
more »
« less
This content will become publicly available on October 1, 2026
New Measurements of the Deuteron-to-Proton F2 Structure-Function Ratio
Nucleon structure functions, as measured in lepton-nucleon scattering, have historically provided a critical observable in the study of partonic dynamics within the nucleon. However, at very large parton momenta, it is both experimentally and theoretically challenging to extract parton distributions due to the probable onset of nonperturbative contributions and the unavailability of high-precision data at critical kinematics. Extraction of the neutron structure and the d quark distribution have been further challenging because of the necessity of applying nuclear corrections when utilizing scattering data from a deuteron target to extract the free neutron structure. However, a program of experiments has been carried out recently at the energy-upgraded Jefferson Lab electron accelerator aimed at significantly reducing the nuclear correction uncertainties on the d quark distribution function at large partonic momentum. This allows leveraging the vast body of deuterium data covering a large kinematic range to be utilized for d quark parton distribution function extraction. In this Letter, we present new data from experiment E12-10-002, carried out in Jefferson Lab Experimental Hall C, on the deuteron to proton cross section ratio at large Bjorken . These results significantly improve the precision of existing data and provide a first look at the expected impact on quark distributions extracted from parton distribution function fits.
more »
« less
- Award ID(s):
- 2013002
- PAR ID:
- 10650738
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review Letters
- Volume:
- 135
- Issue:
- 15
- ISSN:
- 0031-9007
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Top-quark pair production is observed in lead–lead ( ) collisions at at the Large Hadron Collider with the ATLAS detector. The data sample was recorded in 2015 and 2018, amounting to an integrated luminosity of . Events with exactly one electron and one muon and at least two jets are selected. Top-quark pair production is measured with an observed (expected) significance of 5.0 (4.1) standard deviations. The measured top-quark pair production cross section is , with a total relative uncertainty of 31%, and is consistent with theoretical predictions using a range of different nuclear parton distribution functions. The observation of this process consolidates the evidence of the existence of all quark flavors in the preequilibrium stage of the quark-gluon plasma at very high energy densities, similar to the conditions present in the early Universe. © 2025 CERN, for the ATLAS Collaboration2025CERNmore » « less
-
The ALICE Collaboration reports measurements of the large relative transverse momentum ( ) component of jet substructure in and Pb-Pb collisions at center-of-mass energy per nucleon pair . Enhancement in the yield of such large- emissions in head-on Pb-Pb collisions is predicted to arise from partonic scattering with quasiparticles of the quark-gluon plasma. The analysis utilizes charged-particle jets reconstructed by the anti- algorithm with resolution parameter in the transverse-momentum interval . The soft drop and dynamical grooming algorithms are used to identify high transverse momentum splittings in the jet shower. Comparison of measurements in Pb-Pb and collisions shows medium-induced narrowing, corresponding to yield suppression of high- splittings, in contrast to the expectation of yield enhancement due to quasiparticle scattering. The measurements are compared to theoretical model calculations incorporating jet modification due to jet-medium interactions (“jet quenching”), both with and without quasiparticle scattering effects. These measurements provide new insight into the underlying mechanisms and theoretical modeling of jet quenching.more » « less
-
The ALICE Collaboration reports measurements of the semi-inclusive distribution of charged-particle jets recoiling from a high transverse momentum (high ) charged hadron, in and central Pb-Pb collisions at center-of-mass energy per nucleon–nucleon collision TeV. The large uncorrelated background in central Pb-Pb collisions is corrected using a data-driven statistical approach which enables precise measurement of recoil jet distributions over a broad range in and jet resolution parameter . Recoil jet yields are reported for , 0.4, and 0.5 in the range and , where is the azimuthal angular separation between hadron trigger and recoil jet. The low- reach of the measurement explores unique phase space for studying jet quenching, the interaction of jets with the quark–gluon plasma generated in high-energy nuclear collisions. Comparison of distributions from and central Pb-Pb collisions probes medium-induced jet energy loss and intra-jet broadening, while comparison of their acoplanarity distributions explores in-medium jet scattering and medium response. The measurements are compared to theoretical calculations incorporating jet quenching. ©2024 CERN, for the ALICE Collaboration2024CERNmore » « less
-
The first measurements of proton emission accompanied by neutron emission in the electromagnetic dissociation (EMD) of nuclei in the ALICE experiment at the Large Hadron Collider are presented. The EMD protons and neutrons emitted at very forward rapidities are detected by the proton and neutron zero degree calorimeters of the ALICE experiment. The emission cross sections of zero, one, two, and three protons accompanied by at least one neutron were measured in ultraperipheral collisions at a center-of-mass energy per nucleon pair . The 0p and 3p cross sections are described by the RELDIS model within their measurement uncertainties, while the 1p and 2p cross sections are underestimated by the model by 17–25%. According to this model, these 0p, 1p, 2p, and 3p cross sections are associated, respectively, with the production of various isotopes of Pb, Tl, Hg, and Au in the EMD of . The cross sections of the emission of a single proton accompanied by the emission of one, two, or three neutrons in EMD were also measured. The data are significantly overestimated by the RELDIS model, which predicts that the (1p,1n), (1p,2n), and (1p,3n) cross sections are very similar to the cross sections for the production of the thallium isotopes . ©2025 CERN, for the ALICE Collaboration2025CERNmore » « less
An official website of the United States government
