skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2026

Title: High-resolution burn prioritization models enhance fire management decisions in heterogeneous landscapes
Abstract BackgroundPrescribed fire is an essential tool employed by natural resource managers to serve ecological and fuel treatment objectives of fire management. However, limited operational resources, environmental conditions, and competing goals result in a finite number of burn days, which need to be allocated toward maximizing the overall benefits attainable with fire management. Burn prioritization models must balance multiple management objectives at landscape scales, often providing coarse resolution information. We developed a decision-support framework and a burn prioritization model for wetlands and wildland-urban interfaces using high-resolution mapping in Everglades National Park (Florida, USA). The model included criteria relevant to the conservation of plant communities, the protection of endangered faunal species, the ability to safely contain fires and minimize emissions harmful to the public, the protection of cultural, archeological, and recreational resources, and the control of invasive plant species. A geographic information system was used to integrate the multiple factors affecting fire management into a single spatially and temporally explicit management model, which provided a quantitative computations-alternative to decision making that is usually based on qualitative assessments. ResultsOur model outputs were 50-m resolution grid maps showing burn prioritization scores for each pixel. During the 50 years of simulated burn unit prioritization used for model evaluation, the mean burned surface corresponded to 256 ± 160 km2 y−1, which is 12% of the total area within Everglades National Park eligible for prescribed fires. Mean predicted fire return intervals (FRIs) varied among ecosystem types: marshes (9.9 ± 1.7 years), prairies (7.3 ± 1.9 years), and pine rocklands (4.0 ± 0.7 years). Mean predicted FRIs also varied among the critical habitats for species of special concern:Ammodramus maritimus mirabilis(7.4 ± 1.5 years),Anaea troglodyta floridalisandStrymon acis bartramibutterflies (3.9 ± 0.2 years), andEumops floridanus(6.5 ± 2.9 years). While mean predicted fire return intervals accurately fit conservation objectives, baseline fire return intervals, calculated using the last 20 years of data, did not. Fire intensity and patchiness potential indices were estimated to further support fire management. ConclusionsBy performing finer-scale spatial computations, our burn prioritization model can support diverse fire regimes across large wetland landscape such as Everglades National Park. Our model integrates spatial variability in ecosystem types and habitats of endangered species, while satisfying the need to contain fires and protect cultural heritage and infrastructure. Burn prioritization models can allow the achievement of target fire return intervals for higher-priority conservation objectives, while also considering finer-scale fire characteristics, such as patchiness, seasonality, intensity, and severity. Decision-support frameworks and higher-resolution models are needed for managing landscape-scale complexity of fires given rapid environmental changes.  more » « less
Award ID(s):
2424122 2025954
PAR ID:
10650776
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Fire Ecology
Volume:
21
Issue:
1
ISSN:
1933-9747
Subject(s) / Keyword(s):
Fire management GIS Marshes Prairies Pine rocklands Critical habitats Wildland-urban interface Resource protection Everglades National Park
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundThe southeastern United States consists of diverse ecosystems, many of which are fire-dependent. Fires were common during pre-European times, and many were anthropogenic in origin. Understanding how prescribed burning practices in use today compare to historic fire regimes can provide perspective and context on the role of fire in critical ecosystems. On the Aransas National Wildlife Refuge (ANWR), prescribed burning is conducted to prevent live oak (Quercus fusiformis) encroachment and preserve the openness of the herbaceous wetlands and grasslands for endangered whooping cranes (Grus americana) and Aplomado falcons (Falco femoralis). This field note builds a digital fire atlas of recent prescribed burning on the refuge and compares it to the historical fire ecology of ANWR. ResultsFindings indicate that the refuge is maintaining fire-dependent ecosystems with an extensive burn program that includes a fire return interval between 2 and 10 years on a majority of the refuge, with some locations experiencing much longer intervals. These fire return intervals are much shorter than the historic burn regime according to LANDFIRE. ConclusionsFollowing the fire return intervals projected by LANDFIRE, which project longer intervals than the prescribed fire program, would likely be detrimental to endangered species management by allowing increased woody plant encroachment and loss of open habitat important to whooping cranes and Aplomado falcons. Since prescribed fire is part of the management objectives on many national wildlife refuges in the United States, quantifying recent and historical fire ecology can provide useful insights into future management efforts, particularly in cases where endangered species are of special concern and management efforts may be counter to historical disturbance regimes. 
    more » « less
  2. Abstract BackgroundThe increasing size, severity, and frequency of wildfires is one of the most rapid ways climate warming could alter the structure and function of high-latitude ecosystems. Historically, boreal forests in western North America had fire return intervals (FRI) of 70–130 years, but shortened FRIs are becoming increasingly common under extreme weather conditions. Here, we quantified pre-fire and post-fire C pools and C losses and assessed post-fire seedling regeneration in long (> 70 years), intermediate (30–70 years), and short (< 30 years) FRIs, and triple (three fires in < 70 years) burns. As boreal forests store a significant portion of the global terrestrial carbon (C) pool, understanding the impacts of shortened FRIs on these ecosystems is critical for predicting the global C balance and feedbacks to climate. ResultsUsing a spatially extensive dataset of 555 plots from 31 separate fires in Interior Alaska, our study demonstrates that shortened FRIs decrease the C storage capacity of boreal forests through loss of legacy C and regeneration failure. Total wildfire C emissions were similar among FRI classes, ranging from 2.5 to 3.5 kg C m−2. However, shortened FRIs lost proportionally more of their pre-fire C pools, resulting in substantially lower post-fire C pools than long FRIs. Shortened FRIs also resulted in the combustion of legacy C, defined as C that escaped combustion in one or more previous fires. We found that post-fire successional trajectories were impacted by FRI, with ~ 65% of short FRIs and triple burns experiencing regeneration failure. ConclusionsOur study highlights the structural and functional vulnerability of boreal forests to increasing fire frequency. Shortened FRIs and the combustion of legacy C can shift boreal ecosystems from a net C sink or neutral to a net C source to the atmosphere and increase the risk of transitions to non-forested states. These changes could have profound implications for the boreal C-climate feedback and underscore the need for adaptive management strategies that prioritize the structural and functional resilience of boreal forest ecosystems to expected increases in fire frequency. 
    more » « less
  3. Charcoal particles in lake sediments can reveal past fires and linkages to climate and vegetation change. We use analyses of charcoal accumulation rates from two lakes on the Alaskan North Slope to reconstruct past fire activity, and charcoal morphology to identify changes in fuel sources. Charcoal peak analyses were used to calculate individual fire-return intervals (FRIs; years between fire) and mean FRIs (mFRIs) with 95% confidence intervals at local and regional scales. The Lake I4 core (RTS7U2, basal age 7046 cal year B.P.) shows shorter FRIs after ∼3000 cal year B.P. based on the >90 µm charcoal size fraction (regional burning), which coincides with Neoglacial cooling and decreasing moisture. A second higher-resolution core from nearby Kirk Lake (RTS5U3, basal age 743 years) captures short FRIs (mFRI = 198 (105–133) years), suggesting frequent burning compared to the late Holocene portion of Lake I4 core (mFRI = 378 (294–455) years). mFRIs from the larger charcoal size fractions (>125 µm; local burning) at both sites overlap with modern fire cycles observed in the region over the past 82 years. However, the Kirk Lake watershed burned more frequently than other sites in the region, likely related to abundant local shrub cover. These analyses suggest that tundra fires are related to climate variability, but local-scale feedbacks with vegetation can result in heterogenous burning, with implications for ongoing Arctic greening and warming. 
    more » « less
  4. Background: The increasing size, severity, and frequency of wildfires is one of the most rapid ways climate warming could alter the structure and function of high-latitude ecosystems. Historically, boreal forests in western North America had fire return intervals (FRI) of 70-130 years, but shortened FRIs are becoming increasingly common under extreme weather conditions. Here, we quantified pre-fire and post-fire C pools and C losses and assessed post-fire seedling regeneration in long (>70 years), intermediate (30 -70 years), and short (<30 years) FRIs, and triple (three fires in <70 years) burns. As boreal forests store a significant portion of the global terrestrial carbon (C) pool, understanding the impacts of shortened FRIs on these ecosystems is critical for predicting the global C balance and feedbacks to climate. Results: Using a spatially extensive dataset of 555 plots from 31 separate fire scars in Interior Alaska, our study demonstrates that shortened FRIs decrease the C storage capacity of boreal forests through loss of legacy C and regeneration failure. Total wildfire C emissions were similar among FRI classes, ranging from 2.5 to 3.5 kilograms Carbon per square meter (kg C m-2). However, shortened FRIs lost proportionally more of their pre-fire C pools, resulting in substantially lower post-fire C pools than long FRIs. Shortened FRIs also resulted in the combustion of legacy C, defined as C that escaped combustion in one or more previous fires. We found that post-fire successional trajectories were impacted by FRI, with ~ 65% of short FRIs and triple burns experiencing regeneration failure. Conclusions: Our study highlights the structural and functional vulnerability of boreal forests to increasing fire frequency. Shortened FRIs and the combustion of legacy C can shift boreal ecosystems from a net C sink or neutral to a net C source to the atmosphere and increase the risk of transitions to non-forested states. These changes have profound implications for the boreal C-climate feedback and could accelerate climate warming. Our findings underscore the need for adaptive management strategies that prioritize the structural and functional resilience of boreal forest ecosystems to expected increases in fire frequency. 
    more » « less
  5. BackgroundPrescribed fire is vital for fuel reduction and ecological restoration, but the effectiveness and fine-scale interactions are poorly understood. AimsWe developed methods for processing uncrewed aircraft systems (UAS) imagery into spatially explicit pyrometrics, including measurements of fuel consumption, rate of spread, and residence time to quantitatively measure three prescribed fires. MethodsWe collected infrared (IR) imagery continuously (0.2 Hz) over prescribed burns and one experimental calibration burn, capturing fire progression and combustion for multiple hours. Key resultsPyrometrics were successfully extracted from UAS-IR imagery with sufficient spatiotemporal resolution to effectively measure and differentiate between fires. UAS-IR fuel consumption correlated with weight-based measurements of 10 1-m2 experimental burn plots, validating our approach to estimating consumption with a cost-effective UAS-IR sensor (R2 = 0.99; RMSE = 0.38 kg m−2). ConclusionsOur findings demonstrate UAS-IR pyrometrics are an accurate approach to monitoring fire behaviour and effects, such as measurements of consumption. Prescribed fire is a fine-scale process; a ground sampling distance of <2.3 m2 is recommended. Additional research is needed to validate other derived measurements. ImplicationsRefined fire monitoring coupled with refined objectives will be pivotal in informing fire management of best practices, justifying the use of prescribed fire and providing quantitative feedback in an uncertain environment. 
    more » « less