skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 16, 2026

Title: Cultivating a Transfer-Receptive Culture: Exploring the Figured World of STEM Transfer Students in a Community College-to-Four-Year Bridge Program
This study examines the experiences of STEM aspiring community college transfer students engaged in a STEM Bridge program, designed to address critical barriers in transfer pathways, including financial challenges, poor communication of transfer policies, and institutional challenges that result from ineffective partnerships between community colleges and four year institutions. Aimed at creating a transfer-receptive culture, the STEM Bridge program also provides pre- and post-transfer support to participants in order to mitigate transfer shock and promote success in STEM degrees. We use focus groups conducted with STEM Bridge participants on a longitudinal basis from pre-transfer through to graduation to investigate (1) how STEM transfer students narrate their transition into and experience in a four-year institution and (2) how their experiences conform to or resist perceived institutional messaging students report about what is required to succeed in STEM. This study employs an adapted ethnographic approach to analyze narratives. Notable findings include the impact of perceived instructional quality and care by professors, navigational support by advisors and mentors, and emotional support by social networks. We conclude by recommending that four-year institutions recognize the critical role socio-academic integration has in cultivating transfer receptivity and supporting academic success for community college transfer students.  more » « less
Award ID(s):
1930455
PAR ID:
10650833
Author(s) / Creator(s):
; ;
Publisher / Repository:
Research in Higher Education
Date Published:
Journal Name:
Research in Higher Education
Volume:
66
Issue:
8
ISSN:
0361-0365
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The State of California, which has the largest four-year public university system in the United States, does not have an associate degree for transfer (ADT) in Engineering. Therefore, most engineering students who transfer from community colleges do not take lower-division engineering courses and, on average, transfer students must attend two to three additional years of college to obtain a degree at four-year institutions. To identify the gaps in engineering education for transfer students and to increase their success, the research team will focus on a “transfer-ready” curriculum and a faculty learning community. The BRIDGE team, including three partnering institutions, collaborates on identifying the critical success factors (CSFs) for the transfer student’s success, the development of the transfer pathway program, and the Engineering BRIDGE Program to enhance academic preparations for transfer students. This paper summarizes the findings from the Engineering BRIDGE Program during the Summer of 2023 from August 7 - 11, 2023 (five days). A total of 22 incoming transfer students (to Civil Engineering and Mechanical Engineering) participated in this program, assisting in the transition and ensuring academic/career success by enhancing transfer students’ sense of belonging, and addressing course content gaps between institutions. From the analysis of the pre-/post-surveys of the Engineering BRIDGE Program, the program significantly improved—in terms of transfer readiness—students’ conceptual understanding, technical communication, and higher-order cognition. 
    more » « less
  2. This paper examines the challenges community college students encounter when transferring to four-year higher-education institutions, focusing on the gap between their transfer aspirations and actual success. Despite the availability of substantial financial aid in higher education, transfer students continue to face numerous challenges that impede their integration and success at new institutions. These obstacles arise from a combination of institutional factors and individual student characteristics. Utilizing Pascarella’s model, this study underscores the importance of support programs in raising institutional awareness of the diverse challenges transfer students face and the necessity for tailored strategies to facilitate their successful transition and retention. 
    more » « less
  3. According to the National Science Foundation, 50% of Black engineering students who have received a bachelor’s and master’s degree attended a community college at some point during their academic career. However, while research highlights the importance of supporting underrepresented racial and ethnic minorities (URMs) in STEM disciplines, there is a dearth of literature focusing on URMs in community colleges who pursue engineering and other science/math-based majors. Further, Black undergraduates in community colleges are often homogenized by area of study, with little regard for their specific major/discipline. Similarly, while engineering education research has begun to focus on the population of community college students, less attention has been paid to unpacking the experiences of racial subgroups of community college attendees. The engineering student transfer process has specific aspects related to it being a selective and challenging discipline (e.g., limited enrollment policies, engineering culture shock) that warrants a closer investigation. The purpose of this paper is to examine the experiences of a small population of students who have recently transferred from several community colleges to one four-year engineering school. Specifically, we will present preliminary findings derived from interviews with three Black students who started their academic careers at several community colleges in a Mid-Atlantic state, before transferring to the flagship institution of that same state. Interview transcripts will undergo a thorough analysis and will be coded to document rich themes. Multiple analyses of coded interview data will be performed by several members of the research team, as well as external evaluation members who are leading scholars in STEM and/or transfer education research. This research is part of a larger-scale, three year qualitative study, which will examine the academic trajectories of two distinct groups of Blacks in engineering majors: 1) Blacks born and educated in the United States and 2) Those born and educated in other countries. By looking at these populations distinctly, we will build upon past literature that disaggregates the experiences of Black STEM students who represent multiple identities across the African diaspora. Through this lens, we hope to highlight the impact that cultural background may have on the transfer experience. The theoretical framework guiding this study posits that the persistence of Black transfer students in engineering is a longitudinal process influenced by the intersection of both individual and institutional factors. We draw from the STEM transfer model, noting that the transfer process commences during a student’s community college education and continues through his/her transfer and enrollment in an engineering program at a four-year institution. The following factors contribute to our conceptualization of this process: pre-college background, community college prior to transfer, initial transfer to the four-year university, nearing 4-year degree completion. 
    more » « less
  4. Parks, Samantha T (Ed.)
    The experience of transferring to a 4-year college, especially in STEM programs, can be particularly challenging for students. While much of the onus for preparing students for transfer has been placed on community colleges, the 4-year institutions to which students transfer have critical roles to play. With this in mind, we established the Pre-transfer Interventions, Mentoring, and Experience in Research (PRIMER) program to support students transferring into the biology department at our university. The design of this program is based around the key elements of Schlossberg’s Transition Theory, focusing on the support and strategies elements of the theory. Through a weekly academic skill course, peer mentoring, and informal academic and social supports, our goals were for students to increase their involvement in the campus community and to increase their use of academic support resources. We used qualitative and quantitative assessments to compare sense of community and use of campus resources between students who participated in our program and others. We found that students in our program strongly increased their sense of community during the semester compared to other students and used campus resources at a higher rate. Our insights from the PRIMER program can help others in developing programs to support transfer students in biology departments. 
    more » « less
  5. Research has shown that student achievement is influenced by their access to, or possession of, various forms of capital. These forms of capital include financial capital, academic capital (prior academic preparation and access to academic support services), cultural capital (the attitudes, knowledge, and behaviors related to education which students are exposed to by members of their family or community), and social capital (the resources students have access to as a result of being members of groups or networks). For community college students, many with high financial need and the first in their families to go to college (especially those from underrepresented minority groups), developing programs to increase access to these various forms of capital is critical to their success. This paper describes how a small federally designated Hispanic-serving community college has developed a scholarship program for financially needy community college students intending to transfer to a four-year institution to pursue a bachelor’s degree in a STEM field. Developed through a National Science Foundation Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM) grant, the program involves a collaboration among STEM faculty, college staff, administrators, student organizations, and partners in industry, four-year institutions, local high schools, and professional organizations. In addition to providing financial support through the scholarships, student access to academic capital is increased through an intensive math review program, tutoring, study groups, supplemental instruction, and research internship opportunities. Access to cultural and social capital is increased by providing scholars with faculty mentors; engaging students with STEM faculty, university researchers, and industry professionals through field trips, summer internships, professional organizations, and student clubs; supporting student and faculty participation at professional conferences, and providing opportunities for students and their families to interact with faculty and staff. The paper details the development of the program, and its impact over the last five years on enhancing the success of STEM students as determined from data on student participation in various program activities, student attitudinal and self-efficacy surveys, and academic performance including persistence, retention, transfer and graduation. 
    more » « less